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Abstract

A new method is presented for numerical simulation of wave
kinematics at any place on an offshore structure and at any
time. The random wave particle kinematics are modelled by an
auto-regressive moving average process which generates a time
history using Gaussian white noise as input. TFor each desired
wave spectrum, a small number of ARMA coefficients are
required. The method for computing these coefficients is
described. From the origin of coordinates, the waves are
propagated horizontally and vertically throughout the water
column to each node of a finite element model of an offshore
structure. The stretched linear approximation is incorporated
inte the method to model finite amplitude effects. Spectral
directionality is incorporated to take into account the effects
of wave energy spreading. In all examples the deep water wave
dispersion relation is assumed. In the case of shallow waters
or intermediate depths, the same methodology applies: only the
dispersion relation is different. Once the wave kinematics are
simulated at each grid-point or node, it is a simple step then
to compute wave forces, using the Morison equation.

The strong poilnts of this method are its accuracy, its
numerical efficiency, the inclusion of finite wave amplitude
effects and the means for accounting for the effects of wave
spreading. 1In contrast to the discrete spikes which result
when one sums sinusoids, the ARMA spectrum is smooth and
continuous, properly modelling the non-linearities which depend
on difference frequencies, as Iin the case of slowly varying
drift forces. When compared to summing sinusoids, this method
is more efficient in terms of calculations, memory storage, and
input/output memory transfer because it is based on a series of

recursive algorithms., Moreover, by dividing the wave
propagation problem into a horizontal one and a vertical one,
the wave spreading and directionality problem is easily solved.
The finite amplitude non-linearities are modelled by
implementing the stretched linear approximation. For both
deepwater and shallow waters, the same methodology yields a
numerically efficient random wave force time history
simulation, modelling wave dispersion, spreading, and finite
amplitudes.
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NOMENCLATURE

WAVE CHARACTERISTICS

T

ﬂ=21'r/'1“

wave period (sec)

wave frequency (rad/sec)

wave frequency (cycle/sec)

wave length (meter)

wave number (wave/meter)

wave height (meter)

drag coefficient

mass coefficient

gravity field (meter/secz)

structural member dimension (meter)
vertical wave velocity (meter/sec)
horizontal wave velocity (meter/sec)
vertical wave acceleration (meter/secz)
horizontal wave acceleration (meter/secz)
wave elevations (meter)

wave amplitude spectrum (meterz—sec)
wave elevations autocorrelation (meterz)
significant wave height (meter)

peak frequency of the wave amplitude spectrum
(Hz)

area under the wave amplitude spectrum
(meterz)

second moment of the wave amplitude spectrum

(meterz/secz)



ARMA SIMULATION

F
¢

Fs=1/Dt
Dt
w=2xfDt
...]_ .
z “=exp(-jo)
V(n)
wi{n)
H=B/A

S=IH|2

A{z)

B(z) !

root mean square of the wave elevation for
each frequency component Ai= ZSx(sz)Aﬂ(meter)
random phase of each frequency component,

uniformly distributed between 0 and 2

cutoff frequency
sampling frequency
sampling time
normalized frequency,

'
unit-sample delay used in digital Fouriler
transform
output of the ARMA simulation, vertical wave
velocity
input of the ARMA simulation, Gaussian white
noise
ARMA transfer function modelling the given
spectrum or autocorrelation sequence
ARMA spectral estimate modelling the given
spectrum or autocorrelation sequence
denominator of the ARMA model, a polynomial
of the powers of z, roots of A(z)=0 give the
poles of the ARMA model
numerator of the ARMA ﬁodel, a polynomial of
the powers of z, roots of B(z)=0 give the

zeros of the ARMA model



[Ri](a*)=_(Ri)

Si(f)

R
X

Su(f)

ARMA coefficients defining A(z)

ARMA coefficients defining B(z)

AR (or MEM) spectral estimate of the given
spectrum

AR (or MEM) estimate of order N, (TN) of the
transfer function of the given spectrum

AR (or MEM) estimate of order N1(>N) of the
impulse response of the Ha.r. transfer

function

AR (or MEM) coefficients defining the AR
(auto regressive) filter

prediction error of the AR filter
YULE-WALXER matrix equation, solving for the
vector (a*), AR coefficients. This equation
finds a least square estimate of such a
coefficients that can extrapélate the
autocorrelation function by using a recursive
algorithm.

wave velocity spectrum

wave velocity autocorrelation function

wave acceleration spectrum

HORIZONTAL PROPAGATION

Dx

Hhor(f’Dx)

horizontal distance of propagation
transfer function for any wave particle

kinematics or elevations between two points

separated by a horizontal distance Dx



IHlp o =1 magnitude of the transfer function, an even
function of frequency

¢h°r=|lex phase of the horizontal transfer function, an
odd function of frequency. For deepwater
waves,.the phase is a quadratic function of
frequency.

L wave length corresponding to the cutoff

frequency

Nior number of samples, and order of the FIR
filter modelling the transfer function Hhor

DE=F_/N

hor frequency sampling interval of H o

r

A¢max=1rq the maximum phase difference corresponding to
the frequency interval at the cutoff
frequency, A'Pmax= ¢(Fc)-® (Fe=-Df). Avmax is
set inferior to =/4

a = Dx/L number of wave lengths that one wants to be

able to propagate horizontally the wave
kinematics

R= Fs/2Fc ratlio of the bandwidth (Fs/2) to the cutoff
frequency Fcj R>1,and R=1 corresponds to the

Nyquist sampling rate.

hhor(t’Dx) impulse response corresponding to Hhor(f,Dx)

VERTICAL PROPAGATION

Dz vertical distance of propagation

a = Dz/Lc number of wavelengths that one wants to be
able to propagate the wave kinematics

vertically



G(f,Dz)

g(t,Dz)

Nvert

r*Q

10

transfer function for any wave particle

kinematics or elevations between two points
separated by a vertical distance Dz

impulse response corresponding to G(f,Dz)
number of samples, order of the vertical
propagation filter

parameter defining the G(f,Dzj, which has a
Gaussian magnitude (bell shape) for deepwater
waves

parameter defining the g(t,Dz}, which has

also a Gaussian wmagnitude for deepwater waves

DIFFERENTIATION and HILBERT TRANSFORM

I(z)

Nintg
D(z)

dif

Hat1p(E)>

Phi1pe 66)

hilb

integrator used to obtain free surface
amplitudes from velocities

order of the integration filter
differentiator to obtain accelerations from
velocitiles

order of the differentiation filter

Hilbert transform performing a $0-degree
shift on the vertical kinematics in order to

obtain deepwater wave horizontal kinematics.

order of the Hilbert transform filter
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CHAPTER 1

INTRODUCTION

The design of platforms in deepwater requires the
investigatfon of their dynamic behavior. This thesis
presents a new method for time domain wave force simulation,

which is important for the dynamic analysis of offshore

structures. The dynamic analysis may emphasize either a

deterministic or a random wave process. Deterministic
analysis of the response to a single design wave 1s
generally done in the time domain and may include non-~linear
wave theorfies. This will not be discussed further in this
manuscript. The emphasis here is on the modelling of random
wave excitation on offshore structures. The response to
random wave excitation is important in the estimation of
fatigue l1life.

Two approaches are commonly available. The first
approach is the frequency domain. A linear transfer
function is required, in which the response spectrum is
proportional to the input wave amplitude spectrum. Use of
this approach generally prevents the inclusion of nonlinear
wave mechanisms, but is otherwise numerically very

h(? and 12)

efficient. The time domain approac allows the
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use of nonlinear wave force models but has the disadvantage
that long time histories are required to obtain accurate
estimates of response statistics. Present techniques of
generating long wave force time histories are numerically
very inefficient and often sufficiently expensive in
computer time that the designer is forced to do without
adequate simulation. A principal contribution of this
research is a substantial increase in the efficiency of time
domain wave force simulations.

In order to simulate wave forces on an offshore
structure, wave particle velocities and accelerations are
needed. 1In the new procedure presented in this thesis, wave
kinematics are generated in the time domain by using an Auto
Regressive Moving Average model (ARMA). The ARMA mode1(15
and 23) has a transfer function whose magnitude squared
approximates a target spectrum. In this thesis, the ARMA
model time series for the wave velocity is generated first
and then differentiated to obtain wave acceleration. The
target spectrum is the'velociry spectrum Si(f) and is
mathematically related to the wave amplitude spectrum Sx(f)'
The ARMA wave kinematics are propagated throughout the water
column. The horizontal and vertical wave propagation
problems are solved by implementing time convolutions which
are based on three non-dimensional parameters. A set of

simple and rational criteria are derived for implementing
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the convolutions. A systematic use of techniques in digital
signal processing and statistics allows the modelling of

several difficult features of random wave forces in a range
of shallow to deep waters. One such characteristic is wave

(4 and 5), yme simulation of directional

energy spreading
seas are currently expensive on computers. However, with
the ARMA model, the method for simulating random,
directional wave kinematics and forces has been dramatically
simplified and made numerically very efficient. Another
difficult characteristic of random wave force modelling is
that of nonlinear finite wave amplitude effects. Typically,
the stretched linear approximation(lz), which 1s a nonlinear
approximation for deep water waves, 1is incorporated to take
the finite amplitude effects into consideration. The new
procedure presented in this thesls provides a systematic
method to model the stretched linear random wave force on an
offshore structure. The advantages of the ARMA method are
that its procedures are numerically efficient in terms of
calculations, memory storages; and input/output memory
transfers and it models accurately any target wave spectrum
with a continuous and smooth spectrum.

The state-of-the-art for simulating wave kinematics is
to superpose sinusoids at discrete frequenciesca). The

amplitudes of these sinusoids are deduced from the magnitude

of the desired spectrum around each selected frequency
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componeht. This method yields a discrete approximation to
the desired spectrum. A disadvantage is that all phenomena
sensitive to sum and difference frequencies between
components may be inaccurately modelled since the spectrum
will not be a smooth one. Moreover, the calculations are
very expensive in terms of both memory transfers and
storage, and in the number of computations. In contrast, an
intrinsic characteristic of an ARMA model is that future
values of wave kinematics are computed from a simple
recursion relation. This reduces drastically the computer
simulation cost and makes therefore the ARMA wave force
simulation method very advantageous.

Before going into the description of an ARMA wave

(22) how the sea 1is

kinematics model, It is useful to review
modelled as a weakly stationary, and ergodic random process.
First, it is a weakly stationary process, if at an arbitrary
position in time and space, the wave elevation has constant
mean and mean square values and the autocorrelation function
reduces to a function of time intervals. Second, it is an
ergodic random process if both temporal and spatial averages
and statistical expectations yleld the same results for the
mean, the mean square, and the autocorrelation statistics.
The autocorrelation and the power spectrum are a Fourier

transform pair that are very useful in most applications.

Several spectra have been introduced to model developing or
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fully developed seas. The two most common parameters for
classification of wave spectra are the significant wave
height and the zero-crossing period.

The forces that waves induce on floating and fixed
offshore structures are of great importance in design. The
wave forces are commonly assumed to be the sum of an
inertial and a drag force as expressed by the Morison

/'_:. fVCmu - .-ZLfCDD UIU, (1.4)

where F 1is the wave force vector, Cm the mass coefficient,
CD the drag coefficient, p the water density, Vthe displaced
volume, D the projected area of the tubular members at the
grid point level. This formulation is not appropriate when
wave diffraction 1s significant or when veortex excited
motions are present.

The input to the ARMA model 1s Gaussian white nolse, W.
The output is the desired random wave the velocity. 1In this
thesis, random wave velocities are simulated numerically by
an ARMA model of a given wave velocity spectrum Si deduced
from the wave amplitude spectrum Sx by the following
relation:

[ 2 2
S,(£) = (27£)° s (£) =[]
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The ARMA spectrum must approximate the target velocity
spectrum Si and minimize an error integral in a least square
sense. The ARMA model time series for the wave velocity 1is
generated first and then differentiated or integrated to
obtain respectively the wave acceleration or elevation.

In order to propagate the wave particle velocities and
accelerations spatially, two fundamental transfer functions
are required.

The first transfer function, H(f,Dx) is used for
horizontal propagation and relates any wave component
between two points separated by a horizontal distance Dx.
The second transfer function, G(f,Dz) is used for vertical
wave propagation and relates any wave component between two
points separated by a vertical distance Dz. In this thesis,
these transfer functions' impulse responses are used to
implement numerical time domain convolutions. The
convolutions allow for obtaining time series of random wave
kinematics and forces throughout thé water column using the

ARMA time series as input.
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A summary of each chapter is presented below.

Chapter 2 explains the characteristics of an ARMA model
as they pertain to the simulation of wave kinematics of a
target wave spectrum, or from a given autocorrelation
sequence. It offers an error criterion for the ARMA model
based on two important parameters of the wave sgpectrum, 1.e.
the significant wave height and the peak frequency of the
target spectrum.

Chapter 3 explains the wave kinematics simulation
problem for offshore structures. Linear wave theory and the
deepwater dispersion relation are initially assumed. The
water column is divided into a grid of points that
correspond to the nodes of a finite element model of an
offshore structure. The relation between the wave
kinematics at two separate locations is modelled by a set of

linear transfer functions, derived from deepwater linear
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wave theory. The procedure for generation of all necessary

kinematics at each grid point throughout the water column is

explained. Since each wave force component, horizontal and
vertical, depends on the acceleration and the velocity, it
is then a simple step to compute nodal wave forces on the
offshore structure. fhis chapter closes with a comparison
of this method, in terms of numerical efficiency, to the
present state-of-the-art, i.e. the superposition of
sinusoids.

Chapter 4 shows the methods used, and the results
obtained from the simulation of two sea states, one
representing storm conditions and another with moderate wave
heights. Three examples that are very useful for offshore
engineering applications are presented in Chapter 4. They
are:

1) the effect of finite amplitude waves and implementation
of the stretched linear approximation. An example
calculation of base shear and overturning moment on a
single pile gtructure are presented,

2) the effect of wave spreading or directionality of the
wave spectrum, and

3) the effect of shallow water.

Chapter 5 contains the conclusions of this thesis and

suggestions for future research in this field.
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CHAPTER 2

THE A.R.M.A. MODEL

2.1 Introduction

This chapter explains the characteristics of an Auto
Regressive Moving Average model, as they pertain to the
simulation of wave kinematics from a target spectrum or a
given autocorrelation sequence. The input to the ARMA model
is Gaussian white noise, W. The output 1is the vertical wave
particle velocity V. The target spectrum is, for purposes
of example the velocity spectrum S;(f) derived from a
Bretschneider wave amplitude spectrum. It depends on the
two wave spectral parameters frequently used in offshore
engineering, i.e. H , the significant wave height and F,
the peak frequency of the wave amplitude spectrum. The
choice of such a target spectrum is arbitrary: any other
spectrum can easily be handled by an ARMA mode1(17’18). The
Bretschneider spectrum\applieé for developing seas, fully
developed and decaying seas, while the Pierson~Moskowitz
applies for a fully developed seas only. The JONSWAP
spectrum applies for fetch limited conditions. The author
recognizes that such an i1dealization is not necessarily
realistic, but for the purpose of an example simulation of

wave kinematics, finds it useful. Moreover, the
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Bretschneider spectrum in terms of HE and T, 1is accepted by
many codes including API, DnV, etc., in lieu of more
accurate 1nformation(27).

Si(f)’ the wave velocity spectrum is considered to be
equal to the magnitude squared of the transfer function H(f)
of the ARMA model:

sa6) = [n(o)|?
Instead of the frequency f, the following normalized
frequency is introduced w = 27fDt= 27f/Fs (hﬂs 7 ) where Dt
is the sampling time and F_, the sampling frequency. The
variable, 2= exp(jw), 1is a function of the frequency f and
is often used to describe the frequency dependence of
digital filters. The digital functions H(z) and h{n)
correspond to the analog filter H(f) and its impulse
response h(t). Similarly, the continuous spectrum Ses(f) and
the autocorrelation Ri(t) are sampled and their.discrete

2
and Ri(n).

representations are the symbols S*(z) = |H(z)
The ARMA approximation problem that is solved later in
this chapter, is to find an ARMA model, B/A, a rational
transfer function, that approximates the target spectrum, Sﬁ
- IH‘2 and its autocorrelation function Ri‘ The problem is
stated as follows(ls): given the data h(0),...,h(M) and

Ri(O),...,R*(N),_find the lowest order recursive filter

which matches the data. This problem is called a "second

order interpolation”™ problem in the spectral analysis
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literature. Thus, one starts with the autocorrelation
function for wave velocities. This function can either come
from observed data or from an idealized wave amplitude
spectrum.

In this chapter, background is provided on modelling a
random process, e.g., wave kinematics, by linear filters,
such as the functions H(z) and h(n). Then, Auto Regressive,
1/A(z), and Moving Average, B(z), models are introduced and
their characteristics are presented. The ARMA model
B(z)/A(z) is a combination of both models and its particular
properties are presented. The algorithm needed to estimate
the ARMA model 1s explained. This rational filter B(z)/A(z2)
is determined when the coefficlents {bm}M and {an}N that
define the polynomials B(z) and A(z) are calculated by the
algorithm. The order (M,N) of an ARMA filter corresponds to
the number of {bm} and {an} coefficients. Since the ARMA
filter is a recursive filter, the sampled time history of

wave particle velocities 1s easily obtained by the following

relation:
‘ N N <
V(t) = -Zan V(t-nDt) +me W(t-mDt) (2.1)
n=1 m=0

where W {8 Gaussian white noise; V, vertical velocities; {an}

N and{bm}n, the ARMA coeficients. This time simulation is

compatible with the target spectrum Si and the
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autocorrelation Ri' Since for a given spectrum, there
exists no unique time series matching the spectral shape,
the order of the ARMA model may be varied until satisfactory
accuracy is achieved. At the end of the chapter, an error
calculation Is presented that computes the relative errors
on two parameters of wave spectra, i.e. the significant wave

height, Hs, and the peak frequency Fo.

2,2 Linear Filtering- A Review

2.2.1 Time Series of a Random Process

A time series consists of a set of observations made
sequentially in time. Let V(n) denote such a set of
observations made at equal time intervals. If future values
of the series can be described only in terms of a
probability distribution, such a time series represents one
particular realization of a random process. TIn most
applications, wide-sense stationarity is assumed, meaning
that the second order statistical moments of any set of
observations are unaffected by shifting all the times of
observations forward or backwards in time. The second order
statistical moments depend only on time differences not on
the time origin. In this case, the mean M:(n) (the first
order m&ment) and the autocorrelation Ri(m'“) (the second
order moment) of such a process for time origin n and m time

lags can be written:
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1) Ms(n)= E(V(n)) = constant for all n (2.2)
2) R}-{(m,n%= R;{(m) = E( V(n+m) V(n) )
for all n where E is the expectation operator.

The wave veloclity ;utocorrelation function R;(r)
relates the value of the velocity V(t) at time t to its
value at a later time t+7, and so provides an indication of
the correlation of the signal with itself for various time
lags. The autocorrelation function is a real and even

function of the time lags.

2.2.2 Linear Theory

w(n) h(n) y(n)

.

Considering a time series wtn) of length N applied to a
linear filter of impulse response h(n) of length M. The
resulting response of the filter denoted by y(n) is given by
the convolution-sum:

M1

y(n)#Zh(k)w(n-k) 0 \(n\< M+N (2.3)
k=0

Therefore, the processing of a time series 1s easily

accomplished by means of a2 linear filter. One can describe
the input-output relation of a linear filter by transforming
the time domain description into the frequency domain. Any

linear shift-invariant system is completely characterized by
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its impulse-response h(n). The steady-state response to a
sinusoidal input is sinusoidal at the same frequency as the
input, with phase and amplitude determined by the system.
This property makes Fourier representation of signals in
terms of sinusoids and complex exponentials very useful.

A speclal case of particular importance for the ARMA
gimulation method, is when the input is Gaussian white
noise, w(t). The output y(t) of the linear system h(t) 1is
also Gaussian. In order for y(t) to be onme realization of
the velocity at a point, the wave velocitles are modelled as
a random, stationary, ergodic and Gaussian process with an
autocorrelation function Ri and a spectrum S;. As a result
of linear systems theory, it can be shown that this wave
velocity spectrum is modelled by the output spectrum Sy(f)
when white noise is used as input.

Sng) =Sy (f) = |H(f)l2 Sy -IH(f)IZSO (2.4)
since the spectrum of Gaussian white noise is a constant So-
s

w"

(16), the input, output, and

For discrete-time systems
the response sequence are defined as a superposition
(integral) of exponential signals with complex amplitudes.
The Fourier transform of these sequences are expressed in
the form of Fourier series where the Fourier coefficients

correspond to the sampled sequence. The Fourier transform

pairs are:
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v
w iy n
{nput: w(n){ﬂ(eéw)ed dw/ 21T W(e‘“)-zw(n)e"}“
iy he -
Tr o
output: y(n)-[Y(e)w)ePdu/ZTT Y(e"m)-Zy(n)e-‘wm
1 Nt
) s
0
system: h(n)-f H(ed )eawdlo/zn H(eju)-Zh(n)e-auh {(2.5)
__1-( ng.&

where O=21EfDt 1s the normalized frequency Jaﬂs1T, Dt is the

sampling time and j2= -1. The output response y(n) can be

determined either from its own Fourier transform

w
vee ) = m(efYu(e) (2.6)

or from the convolution-sum
M.1

y(n) = RZO h(k) w(n-k) O{n{N+M (2.3)

1

The variable z = = Fgfj" is called the unit delay operator:

z"ly(n) = w(n-19 (2.7)

In this thesis, the input w(t) is often taken to be Gaussian

white noilse.
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2.3 Modelling the Time Series

A stochastic process like sea wave kinematics may be
modelled by the output of a linear filter produced by a
white noise input of zero mean. The idea is that a time
series can be generated from a series of independent
impulses drawn from a fixed distribution usually assumed
Gaussian having a zero mean and a constant variance per unit
frequency. One must estimate the coloring filter, or
transfer function B/A, that generates wave kinematics from

(17,18,19)  1h4s transfer function B/A

Gaussian white noise
becomes very important in the development of this chapter
because it must approximate a target spectrum. A
least-square error minimization(ls) is used to fit the

transfer function to the desired spectrum as shown in the

following expression:

Min EZ = | 4f IH A-E>|2 (2.8)

The transfer function B/A is a rational polynomial
including both poles and zeros, which represents both a pure
deterministic regression and an average of pure random
inputs. The A.R.M.A. model is & combination of a A.R. or
Auto Regressive - and a M.A. or Moving Average model.

The transfer function B(z)/A(z) is a digital filter,
represented by a finite number of coefficients. It is

desirable in practice to employ the smallest number of
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filter parameters which results in an adequate

representation of the transfer function of the process.

2.3.1 The Auto Regressive Model

In this model, the present value V(n) of the vertical
velocity time series is expressed as a finite linear
combination of N1 previous values of the time series and the
current innovation w(n). An auto regressive time series of

order N, is represented mathematically by(10’11)=

V(n)+ a*, V(n-1)+...+ a*Nl V(n-N;) = w(n) (2.9)

This is a linear model relating a dependent variable Vi{n) to
a set of independent variables V(n—l),...,V(n—Nl) plus an
error term w(n), or, equivalently, the variable x{n) is
regressed on previous values of itself. The A.R. operator
has a Z-transform:

Y (2.10)

1 N1

The Auto Regressive model provides a means of extrapolating

A(z) = 1+ a*

N, samples of a known autocorrelation function by the

following recursion relation:

Ri(k)f -a¥%, Ri(k—l) - e -a*N1 Ri(k-Nl) for ky0 (2.11)
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where the autocorrelation function is given or calculated

for at least N. lags. This autocorrelation function is

1
given when one selects an idealized target spectrum and
computes its Inverse Fourier Transform, or is calculated

when real wave data has been processed to yield an estimate

of the following integral sum:

%
Re(t) = lim{r [ v(u)V(u+t) du (2.12)
Treo ’;i

In practice for real wave data, the period T, used to obtain
the temporal average, is of course finite but sufficiently
large so as to ensure that acceptable variance in the
estimate of Ri is obtained. The wave velocity spectrum is
the Discrete Fourier Transform of its autocorrelation
function. To overcome the effects of the truncation (after
Nl lags) of the estimate of the autocorrelation, the Maximum
Entropy method of spectral analysis uses an auto regressive
model to achieve an extrapolation by satisfying the two
following criteria:
1) the spectral estimate agrees with the N1+1 known
values of the autocorrelation function.
2) the extrapolation is based on the fewest possible
;ssumptions about the autocorrelation function

beyond N lags (maximizing the entropy).
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In the results shown in Chapter 4, a Bretschnelder
spectrum has been selected. From real wave data, the
measured autocorrelation can be used to find an Auto
Regressive model. However one must be warned that stability
problems may be encountered with AR models of high order.
The parameters {a*n}Nl that define an Auto Regressive model
are obtained as the solution of the Yule-Walker equation
resulting from minimizing the mean-square error between the
observed random process and that predicted by the AR model.

The Yule-Walker equation is expressed in & matrix form by:

— R A f, \
Rao — - - R (4] o) e
-~ | 1 '
| S , IR SR
»
Ry - - = Rulod) Sy R
or
(R;)(a*) = -(R;) (2.14)

This matrix equation 1s solved for the{a*n}Nlcoefficients.
An efficient technique for solving the Yule-Walker equation
has been developed by Levinson and simplified by Durbin(a):
it takes advantage of the special diagonal symmetry of the

autocorrelation matrix (R%).
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For the ARMA model that is calculated in this thesis,

the AR model serves as a first approximatiom in the
calculation of the ARMA parameters. While the AR model Is
best suited for a pole dominant spectrum, one finds
numerical difficulties in approximating a wave velocity
spectrum of the form

S;(f) = exp(-B/£%) A/f?
because 1t possesses a zero of infinite order at f=0. The
exponential function will tend to zero as the frequency
tends to zero in a stronger manner than any power of f.

lim fpexp(-B/fa) = 0 for any p

fbo
This means that the spectrum possesses a zero of infinite
order at the origin f=0 and therefore the AR model is not
best suited to describe this spectrum. Of critical
importance is the selection of the sampling time for the
autocorrelation function and the order N,, of filter in
order to avoid i1l conditioning of the Yule-Walker

egquations.

2.3.2 The Moving Average Model
Here, the time series V(n) is linearly dependent on a

finite number M of previous innovations:
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V(n) = w(n) + blw(n-1)+ byw(n-2)+...+ b w(n-M) (2.15)

The name moving average is misleading because the weights
1,b1,...,bm multiply the innovations w(n). These MA
coefficients need not be positive and need not sum to one as
would be implied by the term moving average. The Moving

Average operator has a Z-transform:

-1 -M

B(z) = 1+ b1 z +...+ bM z (2.16)

2.3.3 The Auto Regressive Moving Average Model

plinn

Input: w{n) J|A.R M.AN| Qutput: x(n)%
| L e —

A.R.M.A output : V{(n) = A.R. + M.A., components

= aa(n) + bb(n)

The advantage of an A.R.M.A model is flexibility, and the
gmall number of parameters needed in fitting most physical
time serles. Assuming-that the aa(n) and the bb(n) are each
stationary time series and mutually uncorrelated, then the
following properties describe each time series:
1) the A.R. component aa(n) is deterministic: this
means that aa(n+k) can be predicted for any k from
tts past values with full accuracy. Therefore, it

is equivalent to a completely predictable series
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feedback.

2) the M.A. component bb(n) is non-deterministic,
completely random and unpredictable. Gaussian white
noise W is chosen as input to the moving average
component. This input innovation series yields a
stationary output as long as the ARMA system is
stable. Stability of an ARMA system is assured when
the polynomial A(z) has no zeros outside or on the

unit circle.

v(z) = (B(z) / A(z) ) W(z) (2.17)

-1 -2
V(z) 1+ b z+ b z+ ... + b,z (2.18)

| -1
W(z) 1+ a1z+ aiz+ v.. + a z

Another interpretation is to consider the rational
transfer function (ARMA): H(z) = B(z)/A(z) as a system
characterized by a set of poles and zeros. Given a set of
initial conditions, the poles correspond to frequencies that
can appear in the output even when the input is nil:

A{(z)V(z) = Q=—— A(z)=0 (2.19)
The poles graphically correspond to peaks. As to the zeros,
they correspond to frequencies at which the input can be

absorbed in order to yield a nil output:
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B(z2)W(z) = 00— B(2z)=0 (2.20)
Graphically, the zeros correspond to a trough annihilating

the energy of the spectrum.

2.4 The ARMA Approximation

2.4.1 A General Overview

In the context of this section, the three following
concepts have a particular impeortance:

First, the ARMA rational transfer function, B/A, is
used to generate a wave kinematics simulation using Gaussian
white noise as input. The ARMA spectrum |B/A|2 approximates
a target wave velocity spectrum Ss -|H|2- In the time
domain, the sampled impulse response h(n) is the Discrete
Inverse Fourier Transform of H(z).

Second, one must recognize that 1if an arbitrary wave
amplitude spectrum like Bretschneider's is chosen, the
idealization is not necessarily realistic. Nonetheless, one
may find it useful to work with such 1dealizations(6). In
the method presented hereafter, one starts with a specified
autocorrelation sequence for wave velocities. This
autocorrelation may come from an idealized spectrum or from
real sea:data. In either case, the same procedure is used
to obtain the ARMA coefficients. 1In working with real wave
data one may encounter numerical stability problems: the

uncertainty in the spectral estimate would, therefore,
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restrict the order of the ARMA mode1(17'18).

Third, the Yule-Walker equation mentioned in the
paragraph about pure Auto-Regressive models, is an important
step in the procedure because an AR model is used to find
estimates of the above mentioned impulse respomse h{(n). The
Yule-Walker equation is used to solve for the AR

coefficlients {an*}Nl'

R;] (a*) = -(Rp) (2.14)

2.4,2 Summary of Steps in Computing
the ARMA Coefficients

The ARMA approximation of the veloclty spectrum and the
time simulatiqn of the wave particle kinematics are obtained
with the following steps(15'23):
1) Given a2 target wave velocity spectrum Sin the
autocorrelation function Ri is computed by performing an
inverse Fourier transform of Si‘
2) Using this autocorrelation function, a high order A.R.
model is found which satisfies the Yule-Walker equation
(2.14).
3) The AR model is used to obtain an approximation of the
first M+l values of the impulse response h(m): h(0),...,

h{M).
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An Auto Regressive model of high order is found that
matches the autocorrelatfon function's first N1 points.

This is done by finding an M.E.M. filter of order Ni:

Ny
V(n) = -j{: a*  V(n-k) + PE W(n) (2.21)
or .
V(z) = (PE/A*(z)) W(z) (2.22)

where the prediction error PE2 is given by

N

2

)
PEZ = DE(R,(0) -22; a3 Ry (k) (2.23)

These {a*n} parameters satisfy the Yule-Walker equation

or [Ri ] (a*) = =(Ry) (2.14)

The {a*n} coefficients extrapolate the autocorrelation

sequence as in equation (2.11). Here R-(n):
R:(0),...,R;(Ny), the autocorrelation sequence of N,+l1 lags,
is deduced for the wave kinematics either by performing an
Inverse Fourler Transform of the corresponding target
spectrum or by directly computing them from a sea data
record.

This AR(NI) model 1s used to obtain an approximation of
the first M+l values of the impulse response h(m):

h(0),..., h(M). Having solved the equation (2.13) by
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tevinson's algorithm, we obtain these {a*nk parameters that
1
will estimate the impulse response h(k) by the following

regression:

har(k) = 0 k<0 (2.24)
N,
h (k) = (PE)5(k)+§}*j Ry (k-3) otherwise
3=

Usually, the first N (or M) impulse response samples match

the true impulse responsge:

H = Har (2.25)
4) The following second order interpolation problem is
solved by the Mullis and Roberts algorithm. This problem 1s
stated as follows: given the data h(0),..., h(M) and
Ri(O),...,Ri(N), find the lowest order recursive filter
which matches the data by using a least square error

integral. Minimize the following error integral by finding

-5 a rational transfer function B/A that matches the data

+75/2

Min E2 = _A.‘_’ HA - B (2.26)
F
-E/:.
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The solvability of the second order interpolation.
depends on whether or not the impulse response data
h(0),...,h{(M) is consistent with the autocorrelation data
Ri(O),...,Ri(N). Therefore, one can calculate the matrix
(K(M,N)), a (N+1)x(N+1l) symmetric matrix:

M

K(M,N), | o= Ry([1-3]) - k}_:o h(k) h(k+|i-31))
(2.27)

where 1,3= 0,1,...,N.
If [K(M,N)] is positive definite or positive semidefinite,
the data 1s consistent and the interpolation problem is
solvable. 1If [K(H,N)] is positive semidefinite and
det(K(M,N))=0, there exists one recursive filter, ARMA(M,N),
that matches the data. The ARMA filter is indeed a
recursive digital filter that is a rational function B/A.
There are M+l coefficients, {bm}M’ that define the numerator
B and N+l coefficients, {an}N, that define the denominator
A. The resulting expression is henceforth denoted by
ARMA(M,N). |

The coefficients {an}N are golved first. An
(N+1)x{N+1) matrix, [K(M,Nﬂ , 1s created from a combination

of the data given, h and Rﬁ. In order to solve the least

square error integral (2.21) for the {an}N coefficients,
this equation (2.21) can be rewritten in terms of the matrix

[K(M,N)] and the a coefficients:
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B2 = (ay,...,a,) [K(H,N)] 1 (2.28)

kQOJ

and the minimization of the error integral (2.28) with respect

to the {én} coefficients yields the following equation:
N

C% ¢)

K(M,N) . = . ;a8 =1 (2.29)
a,| ™o
/] 1-

and Mullis and Roberts show that the {bm}M coefficients are the
solution of the following recursion equation:
N

bm =:£:ak h(m-k) m=0,...,M (2.30)
k:O

5) The ARMA filter coefficients are normalized so that the
ARMA spectral estimate |B/A|2 has the same peak frequency
and the same peak value as the original spectrum.

6) An ARMA time history of wave particle vertical
velocties, V, is simulated, using Gaussian white noise, W,

as input:

N [
V(t) = - Zan V(t-nDt) + Z b W(t-mDt) (2.1)
m=t m:=0
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2.5 Errors on the ARMA Spectrum Approximation

For a given spectrum, there exists no unique time
series matching the spectral shape. Therefore, the smallest
numbers N and M are selected that give in the frequency
domain an acceptable error between the ARMA model and the
given spectrum.

There exists no criterion that allows us to find the
optimal ARMA spectrum. However by normalizing the ARMA
spectrum at the peak frequency at least the relative error
on the zeroth and second moment will become negligible.
This characteristics stems from the fact that a
non-dimensional spectral shape exists for both the
Pierson-Moskowitz and the Bretschneider spectra that depends
on the two parameters, the peak frequency F0 and the
spectral value, sx(Fo)’ at the‘peak.

We present here the error measurements on the two
parameters of most sea spectra Hs and Fo’ the significant
wave height and the peak frequency, respectively. Since we
normalize the ARMA velocity spectrum Si(f} so that at f=F,,
the peak value:

Sy (Fy)= ARMA spectrum at f=F, (2.31)
the relative errors on the zeroth and second moments of the

Bretschnéider wave elevation apectrum are set equal to zero.
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This implies that the relative errors on Hs and F,

become equal and nil.

M, 2 H, = S,(F)/ F (2.32)

where 2. means “proportional to", H, 1is the significant wave
height, F_ 1is the peak frequency of the wave elevation
spectrum, F1 is the theoretical peak frequency of the velocity
gpectrum Si(Fl)'

For a wave amplitude spectrum of the form

5 4, S
Sx(f)- (F /£ exv(-%(Folf) ) e (2.34)
S, (k)

and a wave velocity spectrun

3 3 by o (2.35)
S;(£)= (F,/£) exp("ﬁ(Fllf) ) e .
Sx ()

the peak of the velocity spectrum, Fl’ is proportional to
the peak frequency of the wave elevatioq spectrum F ,
therefore the relative errors on F and on F, are equal (see

the appehdix for details).
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F /Fy -# 3}5 (2.36)

Since the normalization procedure becomes so important,
an outline 1s given on how to find the peak frequency of an
ARMA spectrum from its coefficients {an}N and {bm}M in the

appendix.

The maximum of the ARMA spectrum is a solution to :

Extiemum S =y 3 . ” (2.37)
oS 2 (a‘-ﬁ) ? ym(oMFDEL) =0 4
a.g&so 4’::1 E# F:. E
Moimom 3 (-2 ) 1 canfamFBe4) <0 (2.38)
é‘g)'lzo 4(:1 ° ﬂ°
d{ N-4
where op - Y ax Q. (2.39)
koo
X ’f by Yug o¢leM (2.40)
k:oo M<l €N

Then, the theoretical peak frequency F1 is set equal to
the solution of (2.37) and (2.38). Since the shape of the
given spectrum depends on the non-dimensional ratio f/Fl,
one can normalize the abscissa of the spectral shape to the

given F1 frequency and the ordinate to the value Si(Fl)'
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"This scaling affects the sampling time and frequency since
the velocity spectrum cutoff frequency 1s a function of Fl‘
For 20 dB down from the peak on the velocity spectrum:

cutoff= Fc = 6. F (2.41)

1
This gives a minimum sampling frequency of 12F1 for the
velocity spectrum. The ordinate Si(Fl) whose theoretical

value is known, gives the scaling factor of the ARMA

spectrum. The ARMA coefficients however are scaled by

Jsi(Fl) and the sampling time Dt=1./Fs.
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CHAPTER 3

THE HYDRODYNAMIC MODEL

Chapter 3 describes the wave kinematics gsimulation
problem for offshore sructures. The water column 1is
modelled by a set of linear transfer functions, which assume
linear wave theory and the deepwater dispersion
relationship. Since each wave force component, horizontal
and vertical, depends on the acceleration and the square of
the velocity, it is a simple step to compute wave forces
from wave kinematics and to use them as inputs to the nodes
of a finite element model of an offshore structure. It will
be explained in this chapter how all necessary wave
kinematics can be generated at each grid point throughout
the water column.

This method will be compared to the present method of
summing sinusoids. An examplé of the number calculations,
of the required memory storage, and of input/output memory
transfers required for one hour of data at 10x10(=100), and
at 100x100(=10,000) grid points_will demonstrate that the
ARMA model 1s both accurate in describing the target sea
spectrum and numerically efficient when compared to current

techniques.
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First, a review will be made of the state-of-the-art
and the current assumptions in wave kinematics simulation,
and in the study of the dynamic behavior of offeshore
structures.

In the design of an offshore structure, a variety of
options for wave force simulation are available. The first
method is to perform a static analysis: one rule of thumb
i that this 1s acceptable for structural systems with
fundamental periods smaller than two seconds. In many cases
however, a static analysis 1is just a preliminary in the
design to be followed by a thorough study of the dynamic
behavior of the structure.

The dynamic analysis may emphasize either a
deterministic or a random wave process. Deterministic
analyses of, for example, the response to a single design
wave are generally done in the time domain and may include
non-linear wave theories. These will not be discussed
further. The emphasis here is on the modelling of random
wave excitation on offshore structures. The response to
random wave excitation is important in the estimation of
fatigue life.

Two approaches are commonly available. The first is
the frequency domain. A linear transfer function approach
is required, in which the response spectrum is proportional

to the input wave amplitude spectrum. Use of this approach
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generally prevents the inclusion of nonlinear wave force
mechanisms, but 1s otherwise numerically very efficient.
The time domain alternative allows the use of
non-linear wave force models but has the disadvantage that
long time histories are required to obtain accurate
estimates of response statistics. Present techniqués of
generating long wave force time histories are numerically
very inefficient and often sufficlently expensive in
computer time that the designer is forced to do without
adequate simulation. A principal contribution of this
research 1s a substantial increase in the efficiency of wave

force simulations.

3.1 Wave Spectrum and Autocorrelation

A prevailing view in marine hydrodynamics 1s to
consider the waves as a random process that is weakly
stationary and ergodic. This allows one to define the mean,
and the covariance and the autocorrelation functions, and to
devise ways to obtain these functions from wave amplitude
records. Moreover, a Fourier transform pair can be
conceived as building bridges between the time domain
autocorrglation and the frequency domain power spectrum(23).

Many wave spectra models exist. The Bretschneider
spectrum is a convenient spectral model suggested in the

literature. It applies to developing, fully developed, and



48

decaying seas depending on the value of 1ts peak frequency.
It is used in examples in this thesis. The
Pierson-Moskowitz spectrum applies to fully developed seas.
This means that the wind acting on the ocean's surface has
had the time "to fetch over a large enough area for a large
enough time." In fact, the wind generates, first, high
frequency wavelets and as it continues to blow for a long
time the other frequency components appear in the spectrum.
When the Bretschneider spectrum is expressed in terms of Hy
and T

2 the significant wave height and zero crossing

period, fully developed seas are not assumed.

3.2 Simulation of Wave Kinematics by Sum of Sinusoids

The atate-of-thevart(a) for more than a quarter of a
century 1is to superpose sinusoids at discrete frequencies.
The amplitude of a sea wave in a frequency band around g is
given by:

Ay -‘}zsx(ﬂi)ag (3.1)
where SX(Q) is the wave amplitude spectrum. Such a wave has
a random phase and linear wave theory is assumed. The sea

elevation at a point may be expressed mathematically by:

(3.2)
TI(t‘w) ViSm da  anfRt+ o)
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The phase ¢ of all such components are assumed to be
uniformly distributed on the (0,27) interval. Assuming the
deepwater dispersion relation, the wave elevation at another
location somewhere within the water column, designated by
horizontal and vertical translations Dx and Dz, are given

by:
-2°D:
T an(0t o)
N, Dx,Dz) =25, [0) d2 € an(2t+p0) . 2°Dx) (3.3)
where the deepwater wave dispersion relationship is given
by:
2
gk = 0 (3.4)
Similarly, the water particle kinematics are derived from
their spectral properties:
2
5, = 0°5_() (3.5)
4
Su = Q5,.(Q) (3.6)
The vertical velocity V and acceleration Av throughout the

water column are given by:

— Q0
V(t,Dx,Dz) -fﬂ 1d0$x(ﬂ) ¢ 7 caa(ﬂu,f,_ﬂzg,_() (3.7)
7

hd [ _@2 2
Vo=a, - -f.o 24985,(0) € T sim(Qtrp. 0°Dx) (3.8)
J



and the horizontal velocity U and acceleration Ah by:

1
u(t,Dpx,Dz) = ﬂ\/idﬂSx(ﬂ) ¢ g’mmugp_ﬂ’%z) (3.9)

[ s -..0-1'2,2 -QzD
b= a -0 2dSQ) € 3 @ltip- 3") (3.10)

In practice, the integrals in these equations are
discretized both in terms of frequency components and of
time samples in order to obtain a time history. Thus, the
wave kinematics are simulated by summing sinusoids at
discrete frequencies: the sea spectrum becomes then a set of
discrete impulses rather than a continuum.

A large number of spectral samples (NSpec) are then
needed in order to model accurately the non-linearities
which depend on the difference frequencies as in the case of
slowly varying forces; such forces are important on
structures such as tension leg platforms. This large number
of spectral samples (NSpec) must be calculated at each
structural mode or grid point throughout the water column,
and at each time step the whole procedure must be repeated.
Since there is no recursion in the state-of-the-art
algorithm, the number of input/output transfers can be very
large. Moreover, a well-known fact of the Fourier analysis

is that if one starts with a superposition of N sinuscids in
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order to describe the wave elevations, the first and second
derivatives - wave velocity and acceleration - will require
many more sinusoidal components (4N and 16N) in order to
describe the wave kinematics with the same level of accuracy
as the wave elevations. This increases the number of
spectral samples NSpec to an even higher magnitude if one
wants to have smooth and accurate sea spectra for wave
kinematics.

Suppose the vertical and horizontal wave kinematic
velocities V, U ,and the corresponding accelerations Av and
Ah must be obtained at a grid of points. There are KL
number of points under consideration: K vertical rows and L
horizontal lines defining a grid throughout the water

column. Let the following equations be computed at each

grid-point defined by its coordinates (Dx, Dz).

NSpec L
-9 D2 1
-y 0 VaS@nd e M(Q;*“f;-nx%) (3.11)
NSpec 93Dz 2
U= .Q.;Visx(ﬂ;)bn e " 9 ARt +ps -k Bx) (3.12)

r
NS 2

&c _.S).i]?_z 2
i A s QWIS@BT e 9 m(&p%-ﬂ;?gz) 3.13)



]

NSpec i —-Q'AQ..,' b
i A i Q2SS & Cﬂ(ﬂ;’”%‘n‘b{) (3.14)

The total number of operations fdr the four wave
kinematics at all grid-points 1is equal to 8 NSpec KL because
at least two multiplications (or two additions) are needed
for each of the four wave kinematic components. The total
number of memory storage locations required for all the
grid-points is equal to 3 NSp;c XL because at least the
NSpec spectral samples of sx(Qi)’ the frequency samples Qi’
and the random phases ¢i must be stored for each grid-point.
The total number of input/output memory transfers is at
least equal to NSpec KL because the time t must be changed
in the equations for each frequency component. Thus, not
only the number of memory input/output transfers is large at
each time step, but the number of operations (additions and
multiplications) and the number of memory storages becomes
gigantic when one must simulate a& time domain fatigue
analysis of an offshore structure subjected to each of the
sea states of a wave scatter diagram in order to obtain
fatigue life estimates. A comparison of the
state-of-the-art with the ARMA wave kinematics simulation
for offshore structures will be presented at the end of this

chapter,.
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A significant advantage of an Auto Regressive Moving
Average A.R.M.A. model of a given target spectrum is that it
uses a recursive algorithm with a small numﬁer of fixed
parameters. Thus, the number of memory input/ouput
transfers is dramatically reduced and the number of required
operations (additions and multiplications) and of memory
storages is much less.

Another advantage of the ARMA wave simulation method 1is
that it provides the designer with a continuous and smooth
spectrum; This feature is specific to ARMA models and 1is
important because it properly models the non-linearities
which depend on the difference frequenciles as is the case
for slowly varying drift forces; such forces are important

on structures such as tension leg platforms.

3.3 Wave Forces

Forces on structures are functions of the relative
dimension of the structural member, D, compared to the wave
height, H, and length, L(Zz).

First, when H is greater than approximately L/7, the
deep-water wave breaks.

Secqnd, {f the structure is large, then wave
diffraction is important: this occurs when L is typically
smaller than 5D. For columns and other small volume

structures, the inertia and the drag forces may be computed
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using the Morison equation.

The Morison equation tells us that the horizontal force
on a strip of vertical circular cylinder is the sum of drag
and inertial forces. The equation of motion of the

structure takes the form:

(M+S:Ca\/)>‘i+ CX+K K- fVCM U ‘L SCAD (U-)'()\u.‘s';‘(a.ls)

where H+PC;Y is the structural mass and added mass; C, the
structural damping; K, the structural stiffness; ﬁ, i, X are
respectively the structural acceleration, velocity and
displacements; Ca- Cp-1l; Cp is the mass coeficient; C4, the
drag coefficient; V, the displaced volume; D, the diameter
of the structural member; p, the fluid density.

Assuming that C and C4; are approximately constant with
depth, the drag force is more concentrated in the
free-surface zone. The drag and the inertia forces decay
exponentially with the depth z respectively as exp{(~2 kz)
and as exp(-kz).

It has been experimentally shown that the drag force is
a viscous force approximately proportional to the square of
the fluia's velocity. By assuming linear wave theory, the

relation between wave kinematics at different points

throughout the water column may be described by transfer
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functions. However, because of the non-linear drag term,
the relation between wave forces at different grid-points
can not be described by linear transfer functions.

When the drag force is small compared to the inertial
force, the Morison equation can be linearized. Defining the
relative velocity V = U- X, one writes the quadratic term
as:

Vo lvo = a; v,
If the excitation is assumed to be a zero mean ergodic
Gaussian process, A, becomes a constant proportional to the

f

root-mean-square of the relative velocity:
Af - O:r_ fg;ﬂ'
The modified Morison equation is given by:
(3.186)

(M+pC V)X (C+ideA{D))'<+K)( - pVC, +4 S’CAA{ u

The values of C and C4 depend on the Reynolds and the
Keulegan Carpenter numbers. Either form of the Morison

equation may be used with ARMA simulations of acceleration

and velocity.

3.4 The ARMA Simulation of Wave Kinematics
One starts by selecting a target vertical velocity
spectrum and models it by an ARMA approximation. With a and

b as the two sets of parameters defining the ARMA model, the
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following recursion formula simulates the wave velocity V

using past consecutive values of V and Gaussian white noise

W.
N M
V(n)-'-}g; ay V{n-j) + ég; by W(n=k) (3.17)

where the current time t is sampled t= nDt.
Accelerations are just the derivative of the velocity
time history: the differentiator filter D(z) is used.
D(z)= (z - z_ )/ 2Dt (3.18)
Simultaneously then, the time histories of vertical

velocities and accelerations may be obtained:

W(Z)"_*[:EEEE:::___'*'V (2) (3.17)

w(z) ARMA D(z)| A_(2) (3.18)

where W(z) 1is Gaussian white noise, V the vertical velocity
and Av the vertical acceleration.

For the horizontal kinematics, velocity and
acceleration, the Hilbert filter Hhilb(z)(le) i1s used at
each grid-point: it 1s & non-causal filter. The Hilbert
filter has a frequency responsé with unit magnitude, a phase
angle of +n/2 for positive frequencies, and a phase angle of

-%/2 for negative frequencies. Such a system is often
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referred to as a 90-degree phase shifter or Hilbert
transform.

-] 0> w 3-T

Hoj1p(w)= < (3.19)
3 Ty w> 0

0 n=0
H, ;,p(t=nDt) = n (mDETT/2)/nDETT (3.20)
2am(n /) [n m g0

where j2 = -1 and Dt is the sampling time, (O is the normalized
frequency W=27fDt and |[W|{TT .

Thus the ideal Hilbert transform or 90-degree phase
shifter corresponds to the transformation one has to perform
to obtain horizontal linear wave kinematics from vertical
kinematics. According to deepwater linear wave theory,
vertical and horizontal kinematic components have the same
magnitude but only a phase shift of 90-degrees.
Approximations to the ideal Hilbert transform can, of
course, be obtained. in the case of finite-duration
approximations,(ZI) the standard technique of windowing,
frequency sampling, and equiripple approximation can be
applied in approximating the ideal characteristics (see

Chapter 4 for results).
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In summary, the method for obtaining the vertical
velocities V is by the ARMA time simulation recursive
algorithm (3.17); the vertical accelerations are obtained by
differentiating V to obtain Av (3.18); the horizontal
velocity U is the Hilbert Transform (3.19) of the vertical
velocity V; and finally, the horizontal acceleration Ah is
the result of a differentiation (3.18) of the horizontal
velocity U.

For generating wave forces near the free-surface, the
sea profile must be known. The wave forces should be
calculated with respect to the actual location of the free
surface and not at the mean-water line. To know the sea
profile, one has to integrate the vertical velocity V at the
mean water line with a filter, I(z). In the examples
discussed here, the vertical velocity time series is
integrated using the trapezoidal rule, and then is passed
through a low pass filter to get rid of very low frequency
components that blow up numerically in the integration
filter(27). In engineering applications, the effect of a
wave's finite amplitude is used to modify the wave force
calculations. Results for the application of the so-called

"gtretehed linear approximation” are presented in Chapter 4.
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3.5 Vertical and Horizontal

Propagation of Wave Kinematics

Two sea states, one storﬁ and one moderate sea in the
Gulf of Mexico, are considered. The ARMA approximations of
Bretschneider spectra are modelled to simulate each of the
two sea-states under study. The ARMA simulated waves are
propagated horizontally and vertically throughout the water
column so that wave kinematics are obtained at each
grid-point throughout the structure.

In the system studied, the waves are numerically
simulated by an ARMA model at the origin of coordinates.
Each additional point of interest is defined by rectangular
coordinates: the vertical axis z is directed positively
upwards with z=-d as the sea bottom. The deepwater wave
dispersion relation is assumed for linear waves. The method
may be modified to account for shallow water effects. This
1s discussed later. The horizontal axis x is directed
positive to the right in the direction of wave travel. A
sketch of typical grid of points follows.

AZ
Mwi v T ‘ AF{h1Ak {EﬁiﬂL
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3.5.1 Vertical Propagation

The manner in which the waves change at different
depths, is called the vertical propagation problem. For
linear deepwater waves, the dispersion relation is k= Qzlg
where the wave number k is related to the wave frequency.
At a given frequency, the linear wave decays exponentially
in amplitude throughout the water column. If the wave

height at a depth ZO from the free surface is given by

ﬂ(t;x;zc)-A exp(-k Zo) exp(jQr) (3.23)
then at a depth Zi
n(t;X;52,)= 7 (t;X52 dexp(-k Dz/g) (3.24)

where Dz-(zi - zo) is the vertical distance in depth between
the free surface and the grid point at depth zi.

The transfer function characterizing the vertical
propagation of a given wave profile 1s defined by the ratio
of the transforms of the output at a depth Zi and of the

input at a depth Zo. At any point along the line x=constant

L
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6F.02) = Y(X;Z45f) - 5

,02) = VIXZ 37y - eXpl-kDz) = exp(-(2nf) D2/g) (3.25)
where Y can be either the wave elevation, the wave velocity
or the wave acceleration, and the deepwater dispersion
relation kg = (21rf)2 holds. This last relation gives a
Gaugssian shape to the transfer function: it is a low=-pass
filter. As the depth Dz increases, the high frequency
components are attenuated more rapidly. All components
attenuate exponentially. Since the transfer function
depends only on the vertical distance, the reference of
vertical coordinates for the vertical propagation can be the
mean water line or the actual free surface elevation (as is

used to model finite amplitude effects)

3.5;2 Horizontal Propagation

The waves disperse when they travel horizontally along
the x axis. For linear deepwater waves, the phase shift
varies as the product of the horizontal distance Dx-(xi-xo)
by the wave number k. This is a frequency dependent phase
shift. For a wave of a given frequency, the phase shift
difference between a wave profile at xi and the original

wave profile at xo is given by

¢ = kDx = QZDX/g
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For grid points lying along the direction of

propagation the transfer function is:

Y(X.;Z;:F)

H(f;Dx) = T('X_;‘;W= exp(j|k|Dx) (3279

= [H] exp(-39)= exp(-3(2n£)s1gn(£)Dx/g)
This transfer function gives a non-causal impulse response.

If a grid-point is in the direction opposite to the
wave propagation, then the transfer fumction can be
rewritten as:

H(f,-Dx) = exp(j|k|Dx)
and the impulse response is the symmetric image of the
other.

Graphically, this is illustrated by the following:

&, R,

ﬂ/JC' ARMA L U\

b

Hig,- Dx) GRS

\ IH)= 4 IH|=1 ,//g
tn?iﬁ{ a::z%?
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Similarly, the transfer function characterizing the
horizontal wave propagation is defined by the ratio of the
transforms of the output signal at a horizontal coordinate

Xi and the input signal at X .

At any point along the axis z=constant, the phase 1is

equal to the scalar product of two vectors:
¢-—;.3‘x -|-;||_I;;t|cosa;?x) (3.26)
where the argument of the cosine in the expression cos(k;:;Dx)
refers to the angle between the vectors, the wave number is
in the direction of wave propagation and g;-is the position
vector defining where the grid-point is located. This
formula defines the phase in all generality and takes care
of oblique waves. However in this section, the problem is
restricted to considering a simple unidirectional spectrum.
This implies that if the wave propagates towvards the
grid-point located on the mean water line at a distance Dx,
the phase is equal to
¢ = Lk Dx

Similarly, if the grid-point 1is located in the direction
diametrically opposite to the wave's propagation, the phase
1s equal to ~-|k|Dx , i.e. the antisymmetric function of k

(and therefore the frequency f).
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The absolute sign of the wave number k and the frequency f
in equation (3.27) indicates that the phase shift 1s an odd
function of k and therefore of the frequency f. This 1is
consistent with the fact that the above transferrfunction
must correspond to a real impulse response h(t). This

implies that the magnitude of H (f) should be an even

hor

function of frequency and an odd function of the phase.

H, _(f,Dx) phase= (27fYsign(£)Dx/g -odd

magnitude= 1. -even

Analytically, the impulse response of such e transfer
function 1is given by:
iE F
h H i ¢
hor t,Dx) = € d,cs 1
y (§.D%) 9 o ao(arr{t_]k(mg))
4 o 4
where Fc is the cutoff frequency.
The bandlimited Inverse Fourier Transform of Hhor(f’Dx)
is analytically defined in terms of Fresnel Integral

functions § and C:
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¢ ¢
s(y) -[M'I_qu clu and C(y):| & 1T w’du
o 2 2

-]

’}Q{"G,Dx) =, /3.% (S (ﬂ?-_ﬁé) +S(§£_)) M}E}Ef)z*

(C @ix-Ety+C (Rt :
@-2)1C EL) e T ()

This impulse response depends on tﬁe non~dimensional
parameter, «, defined as the ratio of the horizontal
distance Dx and the wave length, Lc’ corresponding to the
cutoff frequency, Fc. In other words, @ is the number of
wave lengths one wants to propagate horizontally.

A time history of wave kinematics at each point in the
grid 1s obtained by convolving the original ARMA simulated
wave with the transfer functions for horizontal and

vertical propagation.

3.6 Impulse Response for Horizontal Propagation

The transfer function is a complex function: 1its phase
is parabolic and an odd function of frequency; its magnitude
18 constant and an even function of frequency. Therefore,

its impulse response is a real function of time.
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'phase- éﬂgjiﬁ‘-g'“(g)m‘ ld(g)
H= [H|exp(-3¢) @

magnitude= %“{) (3.28)

\

where j2-—1 and W(f) 1s a frequency window.

Here is a graph of the bandlimited transfer function

!

Q—"ﬂ)l %“ Avgm (f)
4 = |Hl /
‘: |
} i e
% - 7 2
!
!

The frequency window W(f) is a rectangular block equal to

unity over the sea spectral bandwidth.

The sampled transfer function is defined by:

L]

Dx the range of horizontal propagation,
- Fc the bandwidth frequency,

- N the number of samples.

R, the ratio of the sampling frequency Fs to twice
the cutoff frequency Fc: R = Fs/(ZFc).
The impulse response is sampled every Dt where Dt, the

sampling time is the inverse of the sampling frequency:

4

{172

-

Dt F
- c

1 € R=F_/(2F,)
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One can select for R either the Nyquist rate (R=1) or a
higher sampling rate (R)>1).

Since the theoretical transfer function is known, a
sanmpling rate is chosen such that the largest increment in
phase at the cutoff frequency would be less or equal to w/4:
that is two frequency components separated by Df would have
a maximum phase difference less or equal to 1/8th of a wave

length. This last condition 1is graphically represented as

follows: 12Rau: A
/®

Iww' T

E 4

The Inverse Fourier Transform of the theoretical

transfer function yields an impulse response shown in Figure
13 that may be parametrized in order to achieve high
accuracy in the time convolution which is performed at each
grid-point of the water column.

For the four parameters Dx, Fc' N, and R, there exists
thus one relation: this leaves us with three independent
parameters. One convenient way to measure the effect of

these is to create a set of non-dimensional parameters.
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The first parameter in the horizontal propagation
problem is the ratio of the distance Dx to the minimun
wave length L. (corresponding to the cutoff frequency).
This definition may be used for both deep and shallow
water waves. This parameter, a ,combines the distance
Dx and the bandwidth frequency in the following
relation for the deepwater wave case!

a=Dx/L_ = 27 Dx F_2/g (3.29)
where g 18 the gravity fileld.
The second non-dimensional parameter is N, the number
of samples specifying the transfer function. One tries
to use the lowest number of samples N so as to
implement the convolution-sum with the fewest number of
operations. If Df is the sample frequency increment,
the sampling frequency Fs must equal NDf. Similarly,
the total time length Tt of the impulse responase 1s NDt
and the following relations then hold:
F_ = NDf = N/T = 1/pt
The last parameter is R, the ratio of the sampling
frequency to the double of the cutoff frequency. R
equals one for the Nyquist criterion:
R = FB/(ZFC)EI , (3.30)

The maximum phase shift between sample intervals is

located at the bandwidth frequency:
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A Creve } 2
ﬁlax "?(Fc)”?(Fc pf)=WR (2N-R) /N (3.31)
To first order approximation, the maximum phase shift between

sample points is equal to
Agpmax =Axpx -2_@{ Dx = ZEFCR_Dx = 4TXR/N (3.32)
C N
G 3
Although it seems more complicated to use the group velocity
Cg for the deepwater case, the same parameters and the same
maximum phase at cutoff criterion can be used in order to
describe the finite depth horizontal wave propagation. This
is explained further in Chapter 4.

At cutoff Fc, the maximum phase shift, A¢

nax® is imposed

to be less or equal to 1/8th of a wave length. This means

that for good frequency resolution:

e ST/ 4
This implies that
Nt '
3o CNR 4 rR%20 or N/R>l6a (3.33)

The result of this non~dimensional parametrization is to see
the effect of each parameter on the phase and the magnitude
errcrgs. If the parametrization is correctly performed, the
main source of error would be only caused by the FFT

algorithm used to obtain the impulse response.
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The phase error is a function of frequency and
increases to a maximum at the cutoff frequency. The phase
error, is defined as the difference between the theoretical
phase of the transfer function at the cutoff frequency and
the phase estimate of the Fourier transform of the impulse
response used for the time convolution.

Phase Error= |¢’-/¢}l

The magnitude error is a function of frequency and
increases to a maximum at the cutoff frequency.
Theoretically, the transfer function's magnitude is equal to
unity in the bandwidth interval. The relative magnitude
error ie defined by the ratio of the magnitude absolute
error and the theoretical magnitude both considered at the
bandwidth frequency.

Magnitude Errors= |H -lglllﬂl = |H-—§h since |H| =1
These error functions are a function of the non-dimensional
parameters N, R, and a. Because of the relation between
these three parameters (3.33), only two of them are
independent. The cutoff frequency Fc is imposed by the
desired spectrum and the ARMA simulation. Therefore, the
parameter is a linear function of Dx alone as appears in
equations (3.29) and (3.30).

As a result of computing the maximum error at cutoff
frequency as a function of increasing e, one finds that the

relative errors on the impulse response's phase and
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magnitude are of the order of 10'6. O0f course, R is then an
independent parameter. The phase error functions are
decreasing with an increase in the ratio R because
simultaneously the number of samples N will fncrease (N=16aR
and a is a constant). The value of R is fixed, however, by
the ARMA velocities simulation method because the
differentiation requires a ratio R larger than that required
by the Nyquist rate (R=1): R usually equals 2 in the
simulation results shown in Chapter 4. The number of
samples, N, for the transfer function and the impulse
response is given by the relation:

N= 16 aR (3.33)

In summary, one chooses the following quantities:

1) Select Fc from the sea spectrum and the distance Dx
where the grid-point is located.

2) The value of R is selected to provide a correct
simulation of velocities and accelerations usually 2
or greater

3) The number of samples 2N takes into comsideration N
points for the non-causal part of the impulse
response and N for the causal part. This number is
given by

2N= 32qgR.
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3.7 Impulse Response for Vertical Convolution

The vertical propagation of wave kinematics is modelled
after the exponential magnitude decay of wave component in
deep water. The analog transfer function between two points

separated by a vertical distance Dz is given by

G,(f,Dz) = ¢ ¥P% = exp(-(27£)2Dz/g) (3.25)
The subscript stands for analog.
The analog impulse response 1is
Sa(t)-exp(-gt2/4Dz) {;7ZE;;t
This is a pair of Fourler Transforms of particular interest.
They both have a Gaussian bell shape as a function of frequency

and time. The standard derivations of these bell-curves

respectively G} andG: are defined by
0, -(g9/8mwDz q; = 2Dz /4

and the palr of Gaussian magnitude curves correspond to
low~-pass flilter

G (f,Dz) = exp(-lezafz) and

g,(t,Dz) = exp(—t2/26t1) -{g/&wnz.

The total time duratioen Tt of the impulse response g is
chosen to be three times the standard derivation o, of the
bell-shapgd impulse response. The frequency cutoff of the
transfer function G will, as a consequence of this choice,
be even higher than three times the standard derivation g¢

of the bell-shaped transfer function. This stems from the
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N26R\}°z/w (3.39)

The total number of samples, 2N, includes N points for the
causal part of the impulse response and N points for the

non-~-causal part.

2N 21 2R\}ﬂ.z/x

And the impulse response in equation (3.36) can be

rewritten:

(3.40)
g(n) = exp(-w°n2/8azkz)/ 8a R
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3.8 Comparison of the Numerical Effficiency

of the ARMA Method With the Sum of Sinusoids

The water column is divided into a grid 6f points. At
the origin of coordinates, the Auto Regressive Moving
Average wave kinematics for vertical velocity is generated

by the following algorithm:

M
V(n~k) + Ez;bm W(n-m)

V(n) = -ffa, —_

where {ak} N and {bm}M are the coefficient parameters of the
ARMA model and V(n) and W(n) represent respectively the wave
particle velocity and the Gausslan white noise time
histories.

Each grid point throughout the water column is defined
by its coordinates (Dx,Dz): Dx is the horizontal distance
and Dz is the depth where the node of a finite element model
of the offshore structure is located. Through a series of
convolutions, the wave kinematics throughout the grid are
generated.

First, the wave is propagated horizontally and then,
vertically. From a theoretical point of view, the order of

the horizontal and the vertical propagations are
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A, Ay that are being simulated, are used in the Morison

equation. The wave forces, then, are the input to the

finite element model.

3.8.1 Number of Multiplications or Additions

In the ARMA wave gimulation method, one propagates

first horizontally and then vertically the wave particle

kinematics. The number of computations is given below.

1)

2)

3)

At the origin of coordinates, where the ARMA(M,N) wave
simulation is generated, there are:

N +M operations at each time step.
From the origin to each of the K-1 other grid-points on
the mean water line, a horizontal propagation filter

(impulse response function) H (t,Dx) is used. The

hor
total number of operations to implement all the K-1
convolutions 1is:
(k-1) N, ., where N, . is the order of the impulse
response for horizontal propagation.
Propagating down vertically from the K grid-points on
the mean water line to (L-1) depth levels throughout
the water column requires a total number of operations
equal to:
K(L-1) N

where Nv is the order of the

vert’ ert

vertical impulse response functlon.
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4) At each of the KL grid-ponts, the total number of
operations involved in computing the horizontal
components and the vertical accelerations is equal to:

KL(N

2 where Ndif and Nhilb gre the order

a1t 2h11) 0
of the differentiation and Hilbert filters.
All these operations sum up to a total of

Totals= KL(Nvert+Ndif+2Nhilb)+ K(Nhor-uvert)+ (N+M—Nhor)

In comparison, the sum of sines method can be used to
generate the four wave particle kinematics (V,U,A_ ,A.)
and the number of operations involved is equal to:

8 NSpec KL
where NSpec is the number of samples of the wave

spectrum,

3.8.2 Number of Memory Storages

The impulse responses needed for horizontal and
vertical propagation must be stored permanently. These
functions are non~dimensional and depend on non-dimensional
parameters. The two parameters that depend on the location
of the grid-points are a and a,. The impulse response curves
used for ﬁhe wave propagation vary with these parameters &
and a,. for the horizontal propagation, one needs to

determine K-1 functions because there are K-1 destination

points on the mean water line. For the vertical
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propagation, one needs to store L-1 impulse response

functions because there are L-1 depth levels or lines in the

grid. Finally, the Hilbert filter that is used to compute
horizontal velocities from horizontal ones, must be stored
once because it 1s independent of the location of the
grid-point. Thus, the total number of permanent storages
is:

Total: (K=1) Nyor + (1710 Nogre + Nygap

At each time step, the total memory storage necessary to

carry out all the convolutions, must include the wave

kinematics time histories that follow:

1) At each of the K grid-points on the mean water line,
one must store Nvert past consecutive values of the
wave particle vertical velocity in order to implement
the necessary convolutions propagating vertically
throughout the water column. The total number of
memory storage for vertical propagation adds up to:

KNvert

2) At each grid-point throughout the water column, one
needs to store enough wave kinematics past consecutive
values in order to implement a Hilbert transform and a

differentiation. The total amount of memory storage

required is equal to:
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KL(Ngs¢ + Npy1p)

3) At the origin of coordinates, one must store the past M
values of the Gaussian white noise and Nyor Past values
of the vertical velocity in order to implement the
original horizontal propagation. This leads to a total
of permanent storages equal to:

Total = KL (N )+ (K+L) N + K

a1 ¥ h110 vert Nyor

* Wosipt M7 Nyere
In the comparison, the sum of sines method requires a total

number of storages of (3NSpec)KL.

3.8.3 Kumber of Input/Output Memory Transfers

At each time step, the recursion algorithm requires
only one memory I/0 transfer per grid point, this totals the
number of I/0 to KL.

The sum of sines method requires at least KL Nspec I/0

transfers at each time step.

3.8.4 Example and Comparison
Suppose one hour of data is needed and DT=.5sec, 7200
time samples must be generated. The following data is a

given to illustrate the comparison:
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in the ARMA simulation N=22, M=22, Ndif'z’ Nhilbtzg'

Nhor-256’ N

in the state-of-the-art simulation method: Nspec-256

vert-sz'

Let us first take 100 grid-points X=10, L=10
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ARMA (1) |Sum of sines (2) | Ratio(2)/(1)
nunber of 8,6‘45 Lo"l’ ?UD 9 4
addition
number of

2,297 76 , 8oo 33
memory storage
number of I/0 loo L5 Con 256

transfer

Let us now take a 10000 grid-points

K=100, L=100

ARMA (1) Sum of sines(2) Ratio(2)/(1)
number of “2’ €5 20,'150,000 31
addition
number of
o 5,117 7,680, 000 (, 484
memory storage
aumber of I/0 | 10,000 ﬁ,géolgoo 25¢

transfer
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As a result of this comparison, the numerical efficiency of the
use of recursive impulse responses is demonstrated. The advan-
tage of the proposed methods increases rapidly with the number

of equivalent sinusoidal components. The advantage is even more

pronounced when simulations of directionally spread seas are

desired.
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CHAPTER 4

APPLICATIONS AND RESULTS

First, an example of the ARMA simulation of deepwater
wave kinematics is presented. The ARMA model matches a
given spectral shape representing a storm sea (period
between zero upcrossings 'I‘z = 12 gec, significant wave
height Hs = 40 ft), and a moderate sea (Tz-6 sec, Hs-4 fe).
The wave kinematics are propagated horizontally, vertically,
and; at each grid-point throughout the water column, a
differentiation and/or a Hilbert transform are performed in
order to obtain the acceleration from the velocity and/or
the horizontal component from the vertical. The advantages
of the convolution method are that it works on random sea
data and that it 1s numerically more efficlent as
demonstrated at the end of Chapter 3. As a base case to
demonstrate that the impulse response designs are accurate,
a sum of 50 sines 1s selected to model sea amplitude and
water particle kinematic time histories. Each of the 50
frequency:iomponents has a ran@om phase T The wave
kinematic#iare determined at a horizontal distance of 100
meters from the origin and at a depth of 20 meters down from

the mean water line using the superposition of deterministic



87

sine waves. They are, then, compared to the results of the
numerical convolutions. Similarly, the theoretical values
of wave accelerations and the horizontal wave components are
compared to the output of the numerical ﬁodel for
differentiation and Hilbert transform. Also, the author
demonstrates that with this numerical methods wave spreading
is easily incorporated. Results are shown to demonstrate
that the vertical propagation impulse response can be
modified to model the finite amplitude effects of linear
waves by using the stretched linear approximation. Both the
effects of directionality and of finite amplitude are
usually taken into consideration when a time simulation of
wave forces is calculated.

At the end of this chapter, the effect of shallow
waters and finite depths is considered. The transfer
functions that are required for a time domain simulation of
wave kinematics are presented. The impulse responses
necessary for the implementation of the convolution-sums are
designed by the standard technique of windowing, frequency
sanpling and finite impulse response (FIR) digital filter

design.
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4.1 ARMA Modelling of Sea Waves

The Bretschneider spectral shape for wave particle
velocity is selected as a target spectrum for iilustrating
the method. 1In a non~-dimensional representation, the
magnitude is normalized by its peak value ,and the frequency
normalized by the peak frequency of the velocity spectrum.

The wave amplitude spectrum(6) under consideration is:

x {) . H*
I (") Wr(ﬁ—-—))“ﬁf@%

where Hs is the significant wave height, and Po, the peak
frequency of the wave amplitude spectrum. A Bretschneider

spectrum has several properties, and the following relations
h H -, = .
old Tz 710/F° 'JMOIHZ,
2 2
M = H s/16 ; My =57 H s/32F0
where Ho and M, are respectively the zeroth and second order

moments of the Bretschneider wave amplitude spectrum.

The velocity spectrum's maximum F, is a function of F,

4

_ 4
F']" F

wjom

i.e, F, and F, are proportional and the zero crossing period

'1‘z ig related to the velocity spectrunm peak frequency F,
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'1'z and Hs can be expressed in terms of the peak value S;(Fl)
and the peak frequency of the velocity spectrum Fl.

Two sea states have been selected for the simulation of
wave kinematics: a storm sea in the Gulf of Mexico: Hs = 40
ft and Tz- 12 sec. and a moderate sea: Hs = 4 ft and Tz- 6
sec. For Bretschneider spectra, the non-dimensional
spectral shape remains unchanged for any value of Hs’ and Fo
(or Tz). Therefore, once an ARMA spectrum has been selected
that matches the target spectrum, it can be normalized and
scaled to represent any peak frequency Fl and any
corresponding spectral peak value Si(Fl)' One interesting
characteristic of the Bretschneider spectrum is precisely
the fact that in non-dimensional form, its spectral shape is
independent of the actual values of the peak value F1 and
the spectral peak value SQ(FI)' Once one ARMA approximation
has been found, it remains valid for the whole family of
Bretschnelder spectra: this means for the whole range of
significant wave heights Hs and of peak periods F,. The
time sampling alone depeﬁds on the cutoff frequency and
therefore on the value of the peak frequency Fo'

The cutoff frequency is expressed as a ratio to the
peak frequency of the velocity spectrum. At 6F1, the
spectrum is 20 dB below the peak spectral value of the
velocity spectrum, while 3F1 corresponds to 20 dB below the

peak spectral value of the wave elevation spectrum. Because
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of the normalizing and scaling process, the relative errors
on the two parameters Hs and Fo become negligible. One must
check however that the -20 dB attenuation threshold is
reached at the cutoff frequency, and that at 0.53 Fl’ the
lower frequencies reach the ~20 dB attenuation threshold.

On Figures 1 and 2, the ARMA model's coefficients and
the corresponding ARMA spectrum is shown. This ARMA(21,21)
model has 21 poles and 21 zeros and approximates the
velocity spectum from 0 to 6F1.

The ARMA velocity spectrum |B/A|2 using these ARMA

coefficlents (Figure 1) has a unit peak magnitude, that is:

2
S;(F)=|B/A|" = 1
and the sampling frequency FB-24F1. These ARMA coefficients

when used in the ARMA time domain velocity simulation:

N M
V{n) = - kzl akV(n-k) + mgo bmW(n-m)

yield a velocity time series V(n) sampled at Dt-1/24F1 and
the {bm}M coefficients of Figure 1 should be multiplied by
the gcaling factor\ﬁ§3¥:3. Indeed the time simulation is
performed to model a given sea state defined in terms of Hs
and Tz or equivalently in terms of Si(Fl) and Fl’ with such
a scaling factor‘JEETFIB the peak magnitude of the velocity

spectrum is correctly assigned:
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FIGURE 1

ARMA COEFFICIENTS

a coefficients (denominator) b coefficients (numerator)

8.8021774E.0)

»
il

1.000000 B

[=]
o

A, = -2.417805 B, = -1.600297E-01

A, = 2.020816 32 = 2.4413279E-02
Ay = -0.6861026 By = 3.5095071E-02
A, = 0.1000194 B, = 6.0932731E~03
AS = 7.2162442E-02 B, = 2.0972779E-02
Ag = -0.1582499 B6 = -5.8377825E-03
A, = 0.2111652 B7 = 1.2602669E-02
AB = «0.2363975 BS = =1.2525232E-02
Ag = 0.2600787 By = 8.3236791E-03
Ajg < -0.2687707 B10 = =-1.5151329E-02
All = 0.2738586 By; = 6.5852175E-03
Al2 = -0.2733125 312 = =1.4452929E-02
A13 = 0.2560819 Bl3 = 5.7981272E-03
Ay = -0.2404137 Biy = -1.0514684E-02
Al5 = 0.1908552 B15 =£ 4.0679654E-03
Ajg = -0.1381382 Big = ~2.3783268E-03
Al? = 4.6476267E-02 B17 = -7.4141774E-04
A;g = 8.0833592E-02 Big = 1.1307076E-02
Ajg = -6.6951260E-02 Big = 2.1633136E-03
A,p = —8.6666532E-02 820 = =2.5663370E-03
A,y = 1.4706483E-02 B,, = -9.0960273E-04
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at £ =¥, |%|1@s*(r.))‘, 1.8,(F)= S(4-F)

4.2 Yertical Wave Propagétion
The proposed impulse response for deepwater linear

waves has a Gaussian (bell) shape:

g{n) = exp(—nzrlaazkz)/ SazRZ
or

g(n) = exp(-a?/20% )/ 2m o "
and atz = 4azR2/r = ZDz/th2

where n= 1,...,N and a_is a non-dimensional parameter a, =

2nDch2/g; R is equal to the following ratio R= FSIZFC; F, is
the sampling frequency; Dt, the sampling time Dt= 1/Fs; F,
the cutoff frequency; Dz the vertical distance from the
m.w.l. to the grid-point; g the gravity field. Note that
the impulse response is a non-dimensional function that
depends on a non~dimensional parameter e, and is directly
proportional to the distance Dz:
-
o s 2 D,T

If one stores only one impulse response function, one
would have to trade-off different depths Dz for different
sampling times Dt in order to keep this parameter comnstant.
Alternatively, one can calculate a whole set of impulse
responses with varying parameter as and then interpolate

the impulse responses for any value of a,. In the vertical
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propagation case, the impulse response is analytically
simple for deepwater waves, and it may not always be
necessary to do what has been suggested. Nonetheless, one
may store or interpolate a set of impulse responses for
various parameters.

The convolution that yields the desired wave
kinematics, uses the mean water kinematics as input.
Suppose that one wants to compute wave velocities at a fixed
point where there 1is occasionally no fluid. One would
perform the convolution only if this grid-point 1is
submerged. This is logical and is easily implemented on the

computer: let 7 be the free-surface elevation at the instant

t and Vm, sthe mean water line vertical velocity:

IF Dz>77

v(t,Dx,Dz)= vV (t,Dx,0)*g(t) v(t,Dx,Dz)= 0
or

V(n,Dx,Dz)= zvm(n—k) g (k)
k

This time convolution is performed numerically by the above

sum, and Vm is the mean-water-line vertical velocity.
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The results in Figures 3 to 6§ show how the theoretical
vertical velocity (sum of sines) at a depth of -20 meters
compares with the output of the convolution for two cases: a
calm sea (Figures 3 and 4) and a Gulf of Mexico storm

(Figures 5 and 6).

4.3 Stretched Linear Approximation

For Finite Amplitude Effects

4,.3,1 Stretched Linear Application

In the context of wave force calculations, it is of
practical importance to have an accurate knowledge of
particle velocities and accelerations in steep,
near-breaking waves. However, it appears that comprehensive
comparisons with experiments under such extreme conditions
are not commonly available. Thus in spite of the
sophistication of wave theories that may be employed,
uncertainties remain in the prediction model of particle
kinematics for very steep waves. Linear theory is found to
be fairly realistic even when there are major departures
from the small wave height assumption.

The stretched linear approximation takes into account
some finite amplitude effects. The mean-water-line velocity
is transfered from the mean-water-line (referred hereafter
as the m.w.1.) up to the elevation . This means that the

values at the m.w.l. are "stretched” and assigned to the
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actual points where wave elevations are. Suppose that at a
distance Dx from the origin the m.w.l. vertical velocity
Vm(t,Dx,z=0) is known and that the wave elevation 7 is known
at that instant too. In the stretched linear approximation,
this vertical velocity is now assigned at the point z=n and
x=Dx:

v(t,Dx,z=n) = V_(t,Dx,0)

Another feature of the stretched linear approximation
is associated with the vertical decay of wave magnitudes
with depth. The starting point for the vertical decay is
changed: instead of the m.w.l., it starts from the actual
wave elevation position. Thus at each grid-point (Dx,zi) on
the vertical line Dx= constant, the decay starts, at each
time step, from the location of the wave elevation. At
each time step, the exponential decay starts from n to the
destination point at a depth level Dz+n calculated from the
free-surface instead of the m.w.l. These particular
characteristics of the stretched linear approximation
require a lot of memory storages and input/output transfers
when the "sum of sines” model is used. However, the
convolution method handles the vertical propagation model in
an accurate and numerically efficient manner.

Suppose that the wave particle velocity must be
obtained at a fixed grid-point (Dx,Dz). First, the m.w.1l.

vertical velocity at a distance Dx is obtained by the
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horizontal propagation convolution-sum:
Vm(t,Dx,zwo) = Vm(t,x-o,z-O) * hhor(t’Dx)

Ni..r

Vm(n,Dx,z-O) = E: Vm(n—i,x-o,z-o) hhor(i,Dx)

= 'Nhar

For the grid-point (Dx,Dz), one must compare, at each time
step, Dz with the wave elevation #. If the grid-point is

not submerged, the velocity is set equal to zero. If the

grid-point is submerged, the velocity at (Dx,Dz) is the

output of the m.w.l. velocity Vm(Dx,z-o) with the "stretched

linear" transfer function G.
This transfer function G and its impulse impulse
response g are presented here:

G(f,Dz+n)= exp(-(27£)%(Dz+1)/g)

g(t,Dz+n)= exp(—gtzlh(Dz+n)).ngk(Dz+n)r

where % is the free-surface wave elevation at the x=Dx. The
wave kinematics magnitudés decay exponentially from the
free-surface 7 to the grid-point located at a fixed depth
Dz. At each instant, the total depth of the grid-point is
exactly Dz+7m and not Dz. All these impulse responses are

still a function of the parameter a,:
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a, = 27(Dz+m)F_ /g
If the impulse responses are stored and interpolated for any
value of a, there is no problem in obtaining the proper
impulse response at each time step. If not, to recompute
the impulse response at each time step is easy because 1t is
given by a simple analytical formula, and because 0 is known
at each time step.

An outline for what must be done in the stretched
linear approximation for finite amplitude effects follows:
1) Obtain the m.w.l. vertical velocity Vm(Dx,z-o) at a
grid-point (Dx,z=0) by convolving the ARMA m.w.l. velocity
at the origin (x=o0,z=0) with the horizontal propagation
transfer function.

2) Assign this m.w.1l. velocity Vm(Dx,z-o) to the actual
position of the wave free~surface elevation rather than to
the m.w.1l.

3) The grid-point (Dx,Dz) can be above or below the m.w.1l.,
and the velocity there is calculated by following these

steps:



IF Dz<n
YES NO
V(Dx,Dz,t)= Vm(Dx,t)* g(t,Dz+'7) v(Dx,Dz,t)= O
this convolution is digitalized The point (Dx,Dz) 1s not
and performed in the time-domain: submerged at time t;

Note that g(t,Dz+n) has a Gaussian magnitude (bell shape)
and at each time step, a new impulse response function is
used, However, this poses no problem because at each time
step ™ is a given constant.

Figures 7 to 9 present the results of using this method
on a storm sea state, The depth considered is -25 meters
from the m.w.1. This convolution method is simple and
still numerically more efficient than "summing determinisfic
sines”. Moreover, 1t can be used on random as well as
deterministic wave kinematics simulations.

4.3.2 cCalculation of Base Shear and

Overturning Moment on a Single Pile

A single pile of one meter diameter and one hundred
meters long, representing a vertical leg of a steel jacket
offshore structure, is subjected to a storm sea with seven
meter significant wave height and a 2zero crossing period Tz

of 9.94 sec. From Wiegel's formula(3a):
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1.788
Hs-7m, Hs-.378Tz Tz~9.94 sec.

The peak frequency of the wave amplitude spectrum Fo is
deduced from the zero crossing period T, by Bretschneider's
formula(zz):

F =,710/T = .0714Hz

o z
The peak frequency of the velocity spectrum Fo is deduced
from F

o
F| =5 Fpoz.0n1H,

Thus, the two parameters that define the ARMA velocity
spectrum, F. the peak frequency and Si(Fl) are determined

1

and the simulation of ARMA velocities is carried out at a

sampling time Dt-l/ZAF1 and with a scaling factor J.S* (FI)

ARMA :
W(n) s> V()= - Z&' ag V(m..lrz)

+ ; b, W (n -m)i S;(R)
ot [+Fs S(:F): | B ()2 S5 (F)

The spectrum of the Gaussian white noise input and of the
ARMA simulation of the Qerticai velocity at m.w.1l. level are
obtained using Maximum Entropy Method spectral analysis and
are shown in Figures 10 and 11. They are calculated by
averaging the spectral estimate of 6 time series of 512 data
points. The white noise spectrum is constant as expected
over the range up to the sampling frequency FB and the

velocity spectrum 1is as obtained from a short time record



108

as the record. 1If the record length were increased to
infinity, the velocity spectrum would converge to the target
spectrum, Figure 2.

for calculating base shear and overturning moment, one
needs the horizontal wave forces along the pile. The
horizontal velocities and accelerations must be first
generated from the ARMA vertical velocities at the m.w.1l.
Thus, a Hilbert Transform is performed on the vertical
velocities time histories to obtain horizontal velocities
and then the central difference differentiation formula
gives the horizontal acceleration time series from the
horizontal velocities,

In order to use the stretched linear theory, the actual
wave elevations time series n(t) 1is needed, too.

The ARMA vertical velocity is integrated by using the
trapezoidal rule and is high pass filtered to avold the
numerical blowup at low frequency. Thus, knowing horizontal
velocities U and accelerations Ah and the wave elevation 7
(t), all derived from the ARMA vertical velocities time
history V, the random wave force calculation can starf.
Here, Morison's equation can be adequately used because the
forces are drag dominatedczg) (H/D=12.6, L/D=300). The

force at each node is given by
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Thus, the total shear is the sum of all the horizontal
nodal forces:

Shear Force = F

nakes

In the linear wave force calculation, the first node 1is
n=4, the m.w.l. node and its area 1is strictly below the
m.w.l. The wave kinematics are exponentially decaying fron
the m.w.1. 1In the stretched linear wave force calculations,
the first node 1is the firstrinundated nodal area and it
varies with the wave elevation time series n(t). The
vertical propagation decays the wave kinematics from the
wave elevationn coordinate z=n(t) up to the nodal
coordinates z. The z axis starts at the m.w.l. and 1is
directed positively downwards to the water depth. The
overturning moment is defined as the sum of the moment of
all nodal forces Fn with respect to the base of the pile at
z=100m. The overturning moment and the base shear are
higher in magnitude when stretched linear theory 1is used
because the finite wave amplitude above the m.w.l. creates
new nodal forces and moments. Moreover, the interruption of
wave force in the stretched linear force calculation when a
node is not inundated, creates higher wave force spectrum
that woula not exist i1f linear wave theory was used. Some
reservations should be emphasized because Morison's

equation is not made to account for such effects. This Is

important in the design of offshore platforms because 1t
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accentuates the dynamic response of offshore structures.

Figure 12 shows this point.

4.4 Horizontal Wave Propagationmn

The proposed impulse response is obtained by numerical
Inverse Fourier Transform. The number of samples N required
for a good frequency resolution even at the cutoff frequency
is determined by the following equation:

N21l6aR

where R= FSIZFc and a= Dx/Lc; Lc is the wave length
corresponding to the cutoff Fc; Fs is the sampling
frequency. This equation expresses that the maximum phase
difference must be less than r/4. This Awmax occurs at the
cutoff frequency because the phase monotonically increases
with frequency. It is a requirement that the worst phase
resolution between two frequency samples be less than 1/8th
of a wave length., One, first, has to choose:
1) Dx, the horizontal distance of propagation

2) F the cutoff frequency

C’
3) R, the sampling rate R= Fs/ ZFc
Thus, the parameter becomes determined because is equal

tc:

@ = 2%Dx F_ /g
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The transfer function is:
Bo= (8] exp(-1tp) = exp [ algm) 1»3_ er) |

The impulse response is obtained by an Inverse Fourier

Transform or analytically by:

t>0 (t,Dx)

P EEAR SIS AN
mr\'o’—'t)‘]

where X = ZﬁDchzlg, and the Fresnel Integrals S(y) and C(y)

Hhor 5;

JQﬁDx

are defined by:

S(g}: gj Mgundu. ond C(a j ,Ceo‘ITu A

Here, one has to remember that the impulse response 1is a
non-causal function of time. If one selects the impulse
response according to these relations, the error is
negligible: the relative errors on phase and magnitude
between the theoretical and the FIR impulse response is of
the order of 10™% at the cutoff frequency.

In Figure 13, the {mpulse response is shown: it has
been obtained from the numerical Inverse Fourier Transform
of the theoretical transfer function and not from the
analytical equation of the impulse response function. From
Figures 14 and 15, the results of the numerical convolution

for a moderate sea state are presented. They demonstrate
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both the accuracy and the numerical efficiency of the

convolution method.

4.5 Wave Spreading Problem

The wave spreading problem concerns itself with
including the directionality of ocean spectra into the
simulation of wave kinematicscs).

The directional velocity spectrum Si(f,ﬂi) can be
expressed from the Bretschneider sea amplitude spectrum
Sx(f) and a directional spreading function G(Bi) assumed to
be independent of the frequency f. Therefore, the spectrum
for any direction 91 keeps the same shape as the target wave
velocity spectrum S*(f) without the effect of
directionality. Only the scale of the spectrum, not its
shape varies. This is not important for the ARMA wave
kinematics simulation because the scale of the spectrum is
normalized at its peak frequency. Thus, the same ARMA
coefficients {an}N and {bm}u are used for any direction 8;.
The scale of the output of the‘ARMA simulation is normalized
by the following factor depending on the spectral value at

peak frequency: ,’Si(f,ﬂL)

The Bretschneider velocity spectrum is given by:
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s
S}-{(f) = S:’:(Fl) e (?5 exp(—g Q)u)
4

Assuming that the directional spreading function is

independent of the frequency, the directional spectrum Si(f’

%) is given by:
g o 0\ 3,4
f(E,800= spr 0 e ({q) exp(-4(5)>

{

The non-dimensional graph of the directional spectrum is the

same for all directions:

f any 8,

However for each direction Bi' the wave kinematics and

amplitudes are assumed to be uncorrelated with one another.

This means that for each different direction, a different

Gaussian white noise time history Wi must be used as Iinput
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to the ARMA wave kinematics simulations.

Suppose that N plane wave directions are congidered for
wave spreading and that all the Gaussian wvhite noises Wi
(i=1,...,N) are uncorrelated. Assume for example that the
waves are propagating in the direction of the right

half-space.

IB;I-"';-C

Scale factor

I ts: — . H
nputs: Wy ARMA M st(?‘,aj) Outputsi’v(t,q‘)

wvhere 1=1,...,N and the diréctions 81 vary between #/2 and -
-n/2. The outputs are wave vertical velocities at the origin
of coordinates for each direction 01.

The horizontal propagation of wave kinematics upon the
mean water surface (z=o) requires careful attention. The
appropriate system of coordinates 1is cylindrical (r,8,z).
The ARMA simulation takes place for the wave kinematics at
(r=0,0,z=0) the origin, where all different plane wave
components are superposed. At another point (v,8,z=0), each
plane wave is subject to a phase shift, so the horizontal
propagation transfer function depends on the frequency and
the projected distance of the point considered on the

direction of wave propagation k.
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V(t,r=0,0,2=0) H(f,rjbe) V(t,r,e,z-o,e )
i i i .

where 1=1,...,N. Since this is true for each wave direction,
the superposition principle implies that the total velocity at
the point (r,&z-o) is the sum of all the uncorrelated
directional components because the Gaussian white noise used

as inputs for each direction are themselves uncorrelated.

V(t,r,o,z-o)-:Z:V(t,r,g,z-o,gi)
oA

The input/output system for the horizontal wave
spreading is as follows for each direction 61:
1) Inputs: V(t,r=o0,§,z=0), the vertical velocity at the
origin for a random wave propagating in the direction 81.
2) System: H(f,r,6-6,), the transfer function yielding
any wave amplitude or kinematics at a point located at (r,§,
z=0) assuming deepwater linear waves. This function is the
same ats the one used in the unidirectional case {Chapter 3):
H(f,r,9,6,)= exp(-j(zrf)zsign(f)rcos(a-61)/3)
where rcos(e-ai) is the projected distance of the point (r,8,
z) on the phase wave direction 81. There 1is no problem in
1mp1emenfing the convolution-sum in the time-domain. One
has still to c¢choose the three parameters a,R; and N that

obey the equation N216aR.
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3) Qutputs: V(t,r-o,e,z-o,ei), the vertical velocity at

the point (r,f,z=0) for a random wave propagating in the %
direction., Note that V(t,r,#,z=0), the total wave particle
vertical velocity at the point (r,f,z=o0) takes all the

directions into consideration.

v(t,r,f8,z=0) = % V(t,r,ﬁ,z-o,q)

-

One must be careful in calculating the components of
the horizontal wave kinematics. These are obtained at each
grid-point by performing a Hilbert Transform of the vertical
velocitles. This horizontal velocity U(t,r,f,z=0) is
projected like a vector on the corthogonal coordinate systen

(X,Y,2).

Ukre) = Viero) % Ry (¢)

{U.x = U(t,r0) b
Uy = Ulire) swme

amd
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For the vertical propagation, the same techniques
previocusly described can be used. The directional wave
kinematics at m.w.l. are used as input to the vertical
propagation transfer function ijnstead of the unidirectional
wave kinematics. One can, therefore, use the stretched
linear approximation for finit; amplitudes that affects the
impulse response g(t,Dz+n) and compound simultaneously both
the effects of wave spreading for horizontal propagation and
the effects of finite amplitudes for vertical propagation.
This separates and rationalizes the difficulties in
gsimulating time histories of wave kinematics throughout the
water column. Such a method remains numerically more
efficient than "summing sines” and accuracy is adequately

provided,
4.6 Hilbert Transforms and Differentiatiouns

Hilbert transforms are widely used in digital signal

processing. It 1is defined by two sets of equations:

Hhilb(f)- -3 sign(f)
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where j2=*1 and gign(f) is the function defining the sign
(positive or negative) of the frequency f.
Hpgi1p(t)= |2 gin(tr/2)/tx t£0
0 t=0
A finite impulse response (FIR) digital filter design is
obtained by the following standard technique: windowing of
the frequency transfer function defining Hhilb(f)’ frequency
sampling of Hhilb(f)’ and an equiripple approximation of the
ideal characteritics of the filter (L.R.Rabiner and
R.W.Schafer). For the results presented in Figures 16 to
18, the order of the Hilbert transform corresponding to both
sea states 1is found to be 29.
The differentiation uses a central difference scheme:
D(z) = z - z-1/2Dt
Here, acuracy increases with higher sampling frequencies.
Therefore, the ratio R= FB/ZFc is chosen to be equal to or
higher. Figures 19 to 21 present the results of

differentiatiom.

4.7 Intermediate Depths and Shallow Waters
The difference between deep water and shallow water is
defined in terms of the ratio of depth D to the cutoff wave

length Lc corresponding to the cutoff frequency F..
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Shallow water: D/Lc< 1/20
Intermediate depths: 1/20 D/Lc<1/2
Deep waters: D/Lc>1/2

For shallow waters, there is no dispersion and
therefore, the waves propagate horizontally without any
phase change. The solution for horizontal wave propagation
4s trivial and the vertical decay is linear and independent

of the frequency. Thus both the vertical and horizontal

propagation problems are easily golved.
For intermediate depths, the dispersion relation does

not have a parabolic shape(zz). The non-dimensional gr&ph

of thig dispersion curve is:

K
ithquu@nijebxaém hét) )//

SRl (m{}: 3&{%2&0 /
Do (nf): gk Shallo
, ‘ /tDeef

W"'E ~ waler
Tad > 2 ﬁ:

where Fc {8 the cutoff frequency; kc and Lc are the cutoff

wave number and the cutoff wave length; D 1s the water
depth; g is the gravity field. By substituting the

intermediate water limit D/Lc(llz into the dispersion
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relation, one obtains the following values for Fc and k,:

Fc- g tanh(rr)/lnrD.L and kc- =/D
The ARMA simulation of wave kinematics in intermediate depth
water 1s divided into four problems.
1) ARMA simulation of horizontal wave kinematics.
The target velocity spectrum is deduced from the wave
amplitude spectrum: Su(f)- gk sx(f). A time history of

horizontal wave kinematics is generated as shown.

w(t) B/A u(t)
——]  |e———-

where W is Gaussian white noise and U the horizontal

velocity and U(t) is given by the following expression.

N M
U(t) = -n}::-l a U(t-nDt) + m);o b, W(t-mDt)

where the a's and b's are the ARMA parameters and Dt is the
sampling time.
2) At the mean-water-line, the following filter describes
the transfer function between the horizontal and vertical
wave kinematlcs.
H(E) = |B(E)] e3¢ - phase "ar: 5‘3“(13)
magnitude ‘tﬁv\\\(lk‘))



134

It has an even magnitude and an odd phase, the corresponding
impulse response is thus real. This filter is designed by
using the state-of-the-art in Finite Impulse Response (FIR)
filter design. 1In the case of finite-duration
approximations, the standard technique of windowing,
frequency sampling, and equiripple approximation can be
applied in approximating the ideal characteristics of this
equation.

3) The horizontal propagation problem is solved by
designing a FIR digital filter with the following ideal

characteristics:

¥
H(f,Dx)= |H| J rphase =kD"W¢)
1magnitude= w(ﬁ)
The frequency resolution and accuracy depend on the maximum

acceptable phase difference Ag%a at the cutoff frequency.

X

Ay = Ak Dx _ ITAL py . AT DxE R
s Cre Gk Gwy N4

The group velocity Cg is given by the following equation:

cgtx) = L tanh BD (14 2 ED
i gk (+AM{QED)\
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By its definition, the group velocity C8 is usged to
change wave number characteristics to wave frequency
characteristics because dQ-ngk and this phase resolution

A%ax is set to be less than TI/4 as the following graph

illustrates: T
(f: ADX

_JA“pN

—

As dn the deepwater case, the three following parameters are

ugsed: N (the number of samples for the Impulse response), R

(the ratio of the sampling frequency Fs to the double of the

cutoff frequency Fc’ R= FBIZFC, and o= FcDx/ZCg (where this

wave group velocity C8 is calculated at the cutoff

frequency). With all these, the condition reduces to:
N216aR

4) The vertical propagation problem is solved by designing

the two following filters(zz):

a) the transfer function between horizontal wave

velocities on the m.w.l. and some grid-point at a vertical

distance of Dz,
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cosh x(b -br.)
cesh kD

Gu(f,Dz)=

where £, the frequency, is given by the dispersion relation.
b) for vertical wave velocities the transfer function

is instead

Synh X(D-D2)
S kb

Gv(f,Dz)a

These filters all have a smooth shape that look like a
bell-shape when drawn as a function of frequency. The
standard techniques of windowing, frequency sampling and FIR
filter design can be used to approximate these ideal

characteristics(IG).
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4.8 Statistics of ARMA Wave Forces - Comparison to

Real Data and to the Crandall and Moe Model

The statistics of the wave forces acting on a lm
diameter vertical cylinder of unit length at_the mean
waterline are presented as histograms. The first histogram
is computed from the time history of wave forces using 100
minutes of ARMA simulated waves representing a sea state
with Tz= 5.94 sec and H = 7m. The second histogram
presents the extremes of Morison-type wave loading, from the
ARMA wave force data at the m.w.l. There are about 600
peaks in the total record. These peaks correspond to local
maxima of the wave force time history. Between two
zero-upcrossings, there may be more than one peak because
the wave force is not necessarily a narrow band process.

Although not narrow band, the wave kinematics are
Gaussian because the input of the linear ARMA model is
Gaussian white noise. fhe Moriaon-type force should deviate
from the Gaussian probability distribution for large force
values because these are caused by the drag force which is
nonlinear. PFigure 22 is the histogram of Morison wave
loading per unit length. It shows very well the
non-Gaussian behavior for wave forces several standard

deviations in size. These results are in good qualitative
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agreement with wave forces measured on a vertical pile in
towing tank experiments carried out at M.I.T. by B.
Dunwoody, for a 40 knot sea state corresponding to Tz-g,ga
sec, Hs-7 m (U=37.3 knots).

For the extreme wave loads, very long time histories
are needed in order to have a histogram of peak forces with
good reliability. 1Instead of 600 peaks, 10,000 peaks would
be desirable. Such a study was not within the scope of this
thesis. Nonetheless with the 600 peaks, a histogram is
computed and Figure 23 shows that in the range of

3kgf/meter to 4x103kgf/meter where most of our data is

1x10
located, an exponential trend can be observed for the
probability distribution of extreme wave loadings. On a
logarithmic ordinate axis, the exponential brobability
distribution 1s a straight line. Crandall and Moe have
studied the extremes of Morison-type wave loading on a
single pile (J. Mech. Design, 100, 100-104, 1978) and model
the statistics of peak wave forces for stationary Gaussian

random waves. The probability distribution for large forces

is asymptotically given by an exponential formula.
A
. R . —('g—ﬁ \
M~
p({f) = ’ Mf'-‘ % Qf' -g ; .G>go
Lk, ozt
D¥w

2k a3
where f 1s the Morison-type force per unit length
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f o= kn uful + LzD Ae IQQ’S’CDD/Q Mdk;f%ﬂ%f
.- G* ke

and where the associated variances Taz and 0-2 are defined
u

as follows.

The mean square velocity 6'2 at the MWL is given by:

err) Mg = (aF; H) \(Emgl (\F r-;’-)
S S, w (0)dw = 19_4 'M/A c

and the root mean square velocity'O: = 1.11 m/s.

As to Gwz, the mean square acceleration at the m.w.1l.
4 T 4
G o= (O7M, s GRR) K & Ecg )
e
o Ss doo = L6Hm? fouch
T = Mot'fhna» /Jj-uw Qc.ccha.te«- l.2€ W‘/Mf—

The exponential probability distribution starts from fo

3

al
£5€, = 1.09 10° kgf/m

The slope of the straight line (exponential decay) is given
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by

L3

The comparison of Crandall and Moe's probability
density function with the ARMA m.w.l. peak force simulation

yields a very good fit for the ARMA simulation (Figure 23).
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CHAPTER 5

CONCLUSIONS

The following conclusions may be made based on the
results presented in Chapter 4:

1) A procedure is presented and demonstrated for the
numerical simulation of wave kinematics at any place on an
offshore structure (assuming negligible diffraction of the
waves) and at any time. For each desired wave spectrum, a
small number of ARMA coefficents are required to simulate
random wave particle kinematics from Gaussian white noise as
fnput. The method for computing these coefficients is
described. Instead of a sum of sinusoids, the wave particle
velocities are used in a simple linear prediction algorithm
to generate time histories with the desired spectral
properties. Once wave kinematics are simulated at any
grid-point and at any time, it is a simple step then to
compute wave forces in &eep or shallow waters.

2) The wave kinematics are propagated horizontally and
vertically by convolving the ARMA time history at the erigin
of coordinates. The impulse responses that are used, are
derived from linear wave theory. Their analytic equations
and the way the convolution-sums are implemented provide an

accurate and efficient method for calculating wave
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kinematics throughout the water column tO each node of a
finite element model of an offshore structufe.

3) For the purpose of wave force calculations, the
non-linear finite amplitude effects are incorporated into
the vertical propagation model. Actually, the stretched
linear wave kinematics, an approximation for finite
amplitude effects, is considered and a simple time-dependent
impulse response 1is used to compute stretched linear wave
kinematics by a convolution over the mean water line wave
kinematics.

4) For the wave spreading problem, the spectral
directionality is incorporated into the ARMA gimulation of
wave kinematics and the horizontal propagation impulse
response takes into congideration precisely this wave
directionality effect. At any point on the mean water
surface, the wave kinematics from different directions are
superposed because uncorrelated Gaussian white noise sources
are used to simulate the ARMA wave kinematics for each
direction.

5) In the case of shallow waters or intermediate
depths, the same methodology as in the case of deepwater
water is used: only the dispersion relation is different.
The correct procedure is described, and an example
calculation demonstrates the deepwater procedure.

6) The strong points of this method are its accuracy,
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{ts numerical efficiency, the inclusion of wave finite
amplitude effects and the means for accounting for the
effects of wave spreading. 1In contrast to the discrete
spikes which result when one sums sinusoids, the ARMA
spectrum is smooth and continuous, properly modelling the
non~linearities which depend on the difference frequencies
as 1s the case of slowly varying drift forces. When
compared to the state-of-the-~art, this method is more
efficient in terms of calculations, memory storage, and
input /output memory transfer because it is based on a serlies
of recursive algorithms. Moreover, by dividing the wave
propagation problem into a horizontal one and a vertical
cne, the wave spreading and the directionality problem is
easily solved. The finite amplitude non-linearities are
modelled by implementing the stretched linear approximation.
For both deepwater and shallow waters, this methodology
yields a numerically efficient random wave force time history
simulation, modelling wave dispersion, spreading, and finite
amplitudes.

The ARMA spectral analysis method can be used for other
applications whenever a spectrum exists for the description
of the phenomenon. Earthquakes are recorded in terms of an
acceleration spectrum and winds have been modelled by a
velocity spectrum. In both cases, a2 numerical time

simulation of a given spectrum can be generated by using an
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ARMA model.

The sum of sinusoids or the ARMA method have a problem
in common: neither method can guarantee that simulated time
series are physically realizable. This 1s a topic for
future research and analysis: to prevent freak synthesized
events that could not happen in nature.

Another topic for future research is the effort to
optimize the ARMA method and the numerical time domain
convolution sums in order to render the numerical method
even more efficient. Finally, although the total procedure
for random wave force calculation was used in the case of a
single pile, it can now be extended to simulate the dynamic

response of a large deepwater offshore platform.
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APPENDIX 1

Characteristies of the Velocity Spectrum

The wave amplitude spectrum is the better known
unidirectional frequency function employed to describe
random ocean waves. The Bretschneider and Pierson-Moskowitz
spectra- which are essentially of the same form- are the
most commonly used at present. The JONSWAP spectrum, which
is an extension of the Pierson~-Moskowitz spectrum to account
for a much sharper spectral peak, is more recent and
involves additional parameters.

This appendix does not describe how wave spectra are
measured from wave recordings. Nonetheless, from precisely
these wave records, the significant wave height Hs, the
zero-crossing period Tz are derived. 1In the case of the
Bretschnelider spectrum, the peak frequency FO of the wave
energy spectrum is deduced from the zero-crossing period '1‘z
by the following relation(zz):

Fo - .710/'1‘z (A.1)
Supposing that these sea parameters are known for the area
where the. offshore structure will be placed, this appendix

presents some of the characteristics of the Bretschneider

velocity spectrum.
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The dimensionless form of the target velocity spectrum
is deduced from the wave amplitude spectrum. For
conformity, all the spectra are presented here in terms of
the frequency f in Hz. The wave amplitude spectrum has the
general form:

s_(f) = exp(-B/£%) A/E° (A.2)

y
where A = SH*F_ /16 (A.3) and B = SF "/4 (A.4)
Then the dimensionless wave energy spectral shape will be:
. +5/4 ) )
Ss(£)/S,(F ) = T)exp( (-{
-5 -
where Fo is the peak frequency and Sx(Fo)- L "'SHS /lﬁ:o (A.ﬁ)
The wave velocity spectrum is derived from the previous
spectrum!
2
Si(f)- (2=f) Sx(f) (A.7)
All the relations that are given here, provide some

error measurement on two wave parameters, i.e. the zeroth
moment MO and the second moment M2 of the wave energy

spectrum. The dimensionless wave velocity spectrum 1s:

35 (5, () : " Qreret 3 6))

where Fl' the maximum peak of the velocity spectrum, is

(A.8)

proportional to FO:
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o,
F:= Fo 5/3 (A.9)

S, (F)= & 'TT HE R, | 105

The moments of the Bretschneider wave energy spectrum are

defined as follows:

r

M. . §°d£ Sx_.éfg o (- B/Fq)

° (A.11)

Ed . ) R
- - [JL A N r‘
-Mz-f 1't5)(- B H(' U—(B/F‘))
°
F‘i
M= 48, GE))
where Fc is the cutoff frequency. Now, these moments can be
expressed alternatively in terms of either (Hs'Fo) or
(Si(Fl)’Fl) when a cutoff frequency is selected: for
example, Fc/F1 = 3 is the cutoff with 20 dB down from the
peak F° on the wave amplitude spectrum, (6F1, 20 DB down

from the peak Fl on the wave velocity spectrum).
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M- szf’(‘%[f"-)h) - Sx(F) mk{q(lt))\ (A.13)

A Fe PR4
M,_-._%?H:El@rg@ @a)z s,z(r.)FT e” (-g(.@)/sﬁﬁ.u._,

Thus, the relative errors on MO and M, can be expressed

in terms of either the (Hs’ Fl) pair or the (Si(Fl), Fﬂ{;kﬁ

AF, /Fo = AF,/F =0 | (A.15)
AM,/MO: o AHsl,"lg (A‘G)M Aﬂzlml‘. QBHS/HS(A.I'I')

By normalizing the ARMA spectrum at its peak frequency
Fl to its value si(Fl)’ the relative errors on F1 and on Fo
are set equal to zero, thus the error measured on the ARMA
spectrum's estimate of the second moment M2 is thus the
result of an error on the significant wave height Hs
The theoretical value of Mz is known and is given by
formula (A.14), the ARMA estimate of Mz, Hz computed from

the ARMA velocity spectrum is proportional to the area under

the velocity spectrum:

v g B@) Ba) 4z 4
M, L. Soo\{g* =L Re) A = A s)
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The relative error on M2 will be given by:

AMi/Haz AHQ/M‘,: ib_‘%s

(A.19)

As one variles the order of the ARMA filter, i.e. its
number of poles and zeros, that there is no criterion that
yet permits one to unequivocally determine the optimum ARMA
spectrum. Therefore, this suggests that at least one should
obtain an ARMA estimate that matches not only the general
shape of the given spectrum but also its two moments (HO,MZ)

and two parameters (HS,FO).

Normalization of the ARMA spectrum.

The ARMA spectrum should be normalized at its peak
frequency Fl assuming that its shape fits the given spectrum
from O to Fc' The maximum F, is a solution to the two
following equations'

Exfiemum o/ 9 . 2 |
AS; fdf <o gf(oé @o pn ATFRTS - L (A2)

f? d“u" F:=F
Z‘ 8% d& <o Z'e

5{
&

A |
Z X %) G ATFAT €0 &-21)

where N-¢
Cx{( = - (14& CI%+‘? C)S’fué N

and ﬁﬂ; M <Q£N (A.23)
Z by Sket 0 <dem

(A.22)

l\/l

<3 ¥
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